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Abstract—Protecting individuals’ privacy in online
communications has become a challenge of paramount
importance. To this end, anonymous communication
(AC) protocols such as the widely used Tor network
have been designed to provide anonymity to their
participating users. In this work we present AnoA: a
generic framework for defining, analyzing, and quan-
tifying anonymity properties for AC protocols. AnoA
relies on a novel relaxation of the notion of (com-
putational) differential privacy, and thereby enables
a unified quantitative analysis of well-established
anonymity properties, such as sender anonymity and
recipient anonymity.

Moreover we present MATor, a tool for rigorously
assessing the degree of anonymity in the Tor network.
MATor utilizes AnoA and outputs guarantees for
the Tor network that explicitly address how user
anonymity is impacted by real-life characteristics of
actually deployed Tor, such as its path selection algo-
rithm, Tor consensus data, and the preferences and
the connections of the user.
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I. Introduction

Protecting individuals’ privacy in online communica-
tions has become a challenge of paramount importance.
A wide variety of privacy enhancing technologies, com-
prising many different approaches, have been proposed to
solve this problem. Privacy enhancing technologies, such
as anonymous communication (AC) protocols, seek to pro-
tect users’ privacy by anonymizing their communication
over the Internet. Employing AC protocols has become
increasingly popular over the last decade. This popularity
is exemplified by the success of the Tor network [28].

There has been a substantial amount of previous
work [26], [10], [23], [24], [19], [17], [25], [9], [13], [14], [16],
[1], [15] on analyzing the anonymity provided by various
AC protocols such as dining cryptographers network
(DC-net) [8], Crowds [22], mix network (Mixnet) [7],
and onion routing (e.g., Tor) [21]. However, most of
the previous works only consider a single anonymity
property for a particular AC protocol under a specific
adversary scenario. Previous frameworks such as [18] only
guarantee anonymity for a symbolic abstraction of the
AC, not for its cryptographic realization. Moreover, while
some existing works like [15] consider an adversary with
access to a priori probabilities for the behavior of users,

there is still no work that is capable of dealing with an
adversary that has arbitrary auxiliary information about
user behavior.

A. Contributions

In this work we present the novel anonymity analy-
sis framework AnoA. In AnoA we define and analyze
anonymity properties of AC protocols. Our anonymity
definition is based on a novel generalization of differential
privacy, a notion for privacy preserving computation
that has been introduced by Dwork et al. [11], [12].
The strength of differential privacy resides in a strong
adversary that has maximal control over two adjacent
settings that it has to distinguish. However, applying
differential privacy to AC protocols seems impossible.
While differential privacy does not allow for leakage of
(potentially private) data, AC protocols inherently leak
to the recipient the data that a sender sends to this
recipient. We overcome this contradiction by generalizing
the adjacency of settings between which an adversary
has to distinguish. We introduce an explicit anonymity
function (corresponding to a notion of adjacency) α that
characterizes whether two settings are considered adja-
cent or not. In contrast to previous work on anonymity
properties, our formulation of anonymity properties
enables the adversary to choose the messages as long
as the adjacent challenge inputs carry the same messages.
Moreover, AnoA is compatible with simulation-based
composability frameworks, such as UC [6]. In particular,
for all protocols that are securely abstracted by an ideal
functionality [2], our definitions allow an analysis of these
protocols in a purely information theoretical manner.

We formalize the well-established notions of sender
anonymity, recipient anonymity, and relationship
anonymity in our framework, by introducing appropriate
anonymity functions.

As an analysis technique, we present MATor: the
first system to derive sender, recipient and relationship
anonymity guarantees based on Tor’s real-life charac-
teristics, such as its actual path selection strategy. Our
anonymity definitions are modular and take into account
actual Tor consensus data and user preferences (e.g.,
concerning the path selection algorithm).

We apply our analysis technique to recent Tor Metrics
data [27] to perform a comprehensive analysis of Tor’s



Adaptive AnoA Challenger Ch(P, α, n, b)

Upon message(input, r∗ = (U, S,m, sid))

1: RunProtocol(r∗, 0)

Upon message (challenge, r0, r1,Ψ)

1: if Ψ /∈ {1, . . . , n} then abort
2: else if Ψ ∈ T then
3: Retrieve st := stΨ

4: if st = over then abort
5: else st := fresh and add Ψ to T
6: Compute (r∗, stΨ)← α(st , r0, r1, b)
7: Store stΨ.
8: RunProtocol(r∗,Ψ)

RunProtocol(r = (U, S,m, sid),Ψ)

1: if ¬∃y such that (sid, y,Ψ) ∈ S then
2: Let sidreal ← {0, 1}k; Store (sid, sidreal,Ψ) in S.
3: else sidreal := y
4: Run P on r = (U, S,m, sidreal) and forward all

messages that are sent by P to the adversary A and
send all messages by the adversary to P.

Figure 1. Adaptive AnoA Challenger

anonymity guarantees. To this end, we conduct a large
scale evaluation of different path selection algorithms for
a broad variety of trust models, ranging from simple
adversaries that compromise a given number of Tor
nodes, over geographic adversaries (e.g., adversaries that
compromise all nodes within certain countries), up to
complex adversary models that follow economic reasoning.
Due to space restrictions we focus on Tor’s standard
path selection algorithm and on two adversaries: one
that compromises a number of k arbitrary nodes and
a simple geographical adversary that compromises all
nodes within a certain country.

II. The AnoA Framework

AnoA provides a parametric definition for classes of
anonymity definitions in the spirit of adaptive challenge-
response games. The results of these games are used to
define quantitative anonymity guarantees, intuitively by
bounding the probability for every efficient (probabilistic,
polynomial-time) adversary to distinguish two scenarios
s0 and s1 that reflect the considered anonymity notion.
For instance, sender anonymity is captured by the
(in-)ability of an adversary to distinguish two different
possible senders of one message that is sent to the same
destination.

Technically, all anonymity notions in AnoA are defined
in terms of a so-called adaptive AnoA challenger Ch
that interacts with an arbitrary probabilistic polynomial-
time Turing machines A, called the adversary. This
challenger is not only parametric in the protocol under

consideration, but also in the anonymity notion, i.e., there
exists a unique challenger that can be instantiated to
various scenarios. We show the formal definition of this
challenger in Figure 1. The challenger receives as input a
description of the protocol P , the anonymity notion under
consideration expressed as a function α, the number of
allowed challenges n, and a challenge bit b. The goal of the
adversary A will be to distinguish between interactions
with Ch(P, α, n, 0) and interactions with Ch(P, α, n, 1).
In the following, we write Chbα instead of Ch(P , α, n, b) if
P and n are clear from the context. The challenger Chbα
accepts two different kinds of inputs. First, it allows
the adversary to control actions of users within the
network, i.e., the adversary can trigger users to send
specific messages to specific recipients. This is modeled
by an input message of the form (input, r = (U, S,m, sid)),
where U and S denote sender and recipient of the
message m, respectively, and where sid is a session
identifier that enables communication across individual
invocations. Upon receiving this input, the challenger
executes the underlying protocol to perform this send
request, abbreviated by a function call to RunProtocol.
Second, the challenger accepts up to n challenge messages
of the form (challenge, r0, r1,Ψ). For every such challenge,
uniquely identified by the tag Ψ, the challenger maintains
a state stΨ that is fresh (for newly started challenges),
over (for completed challenges), or contains information
about the (ongoing) challenge. For every challenge that is
not in the state over, the challenger calls the anonymity
function α on the state stΨ, the messages r0 and r1 and
the challenge bit b. Depending on which anonymity notion
the function α describes, it computes an action r∗ that a
user should execute within the network. The challenger
finally executes the protocol P for user action r∗, while
additionally making sure that all protocol invocations
from input messages and challenges messages can be
told apart. Moreover, the challenger allows protocol
participants to send messages to the challenger and vice
versa.

After defining the challenger, corresponding probability
bounds (ε, δ) of a given adversary A are defined as follows.

Definition 1 ((n, ε, δ)-α-ind-cdp). Let Ch be the chal-
lenger from Figure 1. The protocol P is (n, ε, δ)-α-
ind-cdp against an adversary class A, where ε ≥ 0 and
0 ≤ δ ≤ 1, if for all PPT-adversaries A ∈ A:

Pr [0← 〈A||Ch(P, α, n, b)〉]
≤ eε Pr [0← 〈A||Ch(P, α, n, 1− b)〉] + δ.

It thus provides a quantitative assessment of anonymity
in the sense of computational differential privacy [20],
and it thus allows differentiating between distinguishing
events and small comparative gains of information.



A. Anonymity Definitions

Sender anonymity. Sender anonymity intuitively cap-
tures the anonymity of a user U against a (possibly
malicious) destination. By definition of the scenario, the
destination S sees the exit node and tries to find out
which one of two possible users U1 and U2 it is interacting
with.

Recall that the different anonymity notions are
defined as parameters α in the overall challenge-
response game. Sender anonymity αSSA is formally
defined as αSSA(st , r0 = (S0,R0,m0, ), r1 =
(S1, , , ), b) :=

if st = fresh ∨ st = (S0,S1) then
output ((Sb,R0,m0, 1), st := (S0,S1))

Recipient anonymity. Recipient anonymity intuitively
captures the anonymity of a user U against a (possi-
bly malicious) ISP of this user. By definition of the
scenario, the ISP sees both the user U who starts a
connection and the entry node of every circuit. Its goal
is to identify which of two possible destinations S1 and
S2 the user communicates with. Recipient anonymity
αSRA is defined as αSRA(st , r0 = (S0,R0,m0, ), r1 =
( ,R1,m1, ), b) :=

if (st = fresh ∨ st = S0) ∧ |m0| = |m1| then
output ((S0,Rb,mb, 1), st := S0)

Realistic Adversaries. We model adversaries that
resemble realistic scenarios, by introducing the concept
of adversary classes. These adversary classes allow for
restricting the strong AnoA adversary to the scenario
of interest.

Technically, an adversary class A(·) is a wrapper that
restricts the adversary A in its possible output behavior,
and thus, in its knowledge about the world. Technically,
it is a PPT machine A(A) that internally runs the
adversary A and forwards all messages that are sent from
a compromised node to the adversary A and vice versa.
We refer to the full version [3] for a detailed description
of these technical adversary classes.

Moreover, instead of only considering k-of-n adversaries
(adversaries that freely compromise k arbitrary nodes
within a set of n nodes), we aim to capture more
sophisticated adversary classes for different types of
adversarial corruptions, such as corruption based on
geo-locality, bandwidth, or cost-functions for every node
n. Defining appropriate classes within the underlying
framework then ensures that the adversary compromises
nodes according to the considered restrictions.

Instead of defining an individual class for each of these
considered adversary scenarios, we define a parametric
adversary class that we call budget-adversary class, out of
which we will instantiate all relevant individual adversary
classes. The budget-adversary is parametric in a given

cost function f that assigns costs to every node n within
the Tor network, and in a budget G that the adversary
may spend to corrupt nodes.

Definition 2 (Budget-Adversary). A budget-adversary
class ABf (·), or budget-adversary for short, for a given
cost function f and budget B is a Turing machine that
upon input of an adversary machine A behaves as follows:

• ABf (A) keeps track of a budget b and initializes it as
b := B.

• ABf (A) internally simulates A and forwards all
messages from A to the protocol and the challenger
and vice versa, with the exception of compromise
requests, as specified in the next bullet.

• Whenever A sends a command compromise(x) for
a node x, ABf (A) verifies that f(x) ≤ b. If this holds,
it forwards the command to the protocol and reduces
the budget b := b− f(x). Otherwise it responds with
an error message.

III. MATor: Measuring anonymity guarantees

We developed the anonymity measurement tool MA-
Tor [4] which computes the impact of the path selection
algorithm on the anonymity of a user. The tools uses the
actual Tor metrics data for the measurement and enables
the specification of a wide variety of adversary classes.
Using our theoretical framework AnoA, we prove that
the results of MATor are secure.

Because of space constraints we present only two (very
simple) example adversaries, namely an adversary that
compromises a fixed number of k nodes and a geo-
graphical adversary that compromises all nodes within a
country. In a technical report [5], we conducted extensive
experiments with more complex adversary classes such as
bandwidth-compromising adversaries, botnet-adversaries
and adversaries that have a monetary budget. These
experiments are founded in the AnoA framework and
supported by MATor as well.

A. k-of-n adversaries

We begin with the k-of-N adversary model in which the
adversary may compromise up to k nodes of its choice.
This worst-case adversary is useful for estimating the
maximal impact that a collaboration of a certain number
of participants can have on the anonymity within the
Tor network. Such an adversary typically compromises
the nodes with the largest weight and thus we expect
this adversary to be stronger whenever the trust is
not distributed evenly over the nodes. Formally, we
instantiate our budget adversary class to model that the
adversary may compromise k arbitrary nodes (out of all
N = |N | Tor nodes), independent of their properties, by
using fk-of-N (x) := 1 for all nodes x ∈ N . The adversary
class is then Akfk-of-N .
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Figure 2. Advantage δ of a country based adversary, depending on
the country for which it compromises all nodes, for the countries
France (FR), Germany (DE), Netherlands (NL) and United States
(US), ordered by the guarantee for Tor’s path selection algorithm –
results for sender anonymity and recipient anonymity. [5]

B. Geographic adversaries

We define a geographical adversary that is completely
independent of bandwidth or a specific budget, as it
can compromise all nodes that are located within a
specific country. Such an adversary model can reflect
the fear of a user that an oppressive regime tries to
deanonymize the communication to find out either the
sender or the recipient of the communication. In such
scenarios, the user might fear that all nodes that lie within
the geographical (or jurisdictional) border of a country
can be compromised (e.g., forced to reveal information)
by the regime. We formalize this intuition of geographical
adversaries by first introducing a slight variant of budget
adversary classes AB=1

fΠ for boolean predicates Π, where

fΠ is defined as:

fΠ(x) =

{
0 if Π(x) = 1
∞ otherwise

We then instantiate the predicate Π by country predicates
ΠC for countries C, defined as

ΠC(x) :=

{
1 if x.country = C
0 otherwise

By choosing a country C, we can formally define an
adversary that can eavesdrop on all nodes within this
country, e.g., the adversary AB=1

fΠNL
with

fΠNL(x) =

{
0 if x.country = NL
∞ otherwise

Figure 3. Impact of a multiplicative factor on recipient
anonymity [4]. We chose values for ε of ε = 0.25 for one setting
and ε = 0 for the other setting. The graph depicts the value for δ
computed by the monitor for both path selection algorithms. The
scenarios are: HTTPS + IRC vs. HTTPS on 5 February 2014.

compromises all nodes within the Netherlands. In our
analysis, we instantiate ΠC for all countries C we wish
to analyze.

These geographical cost functions assume that the
adversary can (basically for free) compromise all nodes
within the country, but it cannot compromise other nodes.
Such an adversary allows to evaluate how much impact
a country has on the Tor network in terms of anonymity.
We show the advantage δ of the geographical adversary
for the four countries Germany, France, Netherlands
and US in Figure 2. (This selection was made since, to
improve readability, we have ordered the countries by the
advantage of PSTor and selected the top four countries.)

C. The impact of a multiplicative factor

The definition of AnoA introduces a multiplicative
factor in addition to the normal additive factor (that
often suffices to describe the success probability of an
adversary). This factor allows for accounting for various
events in which an adversary might gain information
that may even lead to a non-negligible advantage without
overestimating these events.

The experiments (see Figure 3) show that such a
factor often only plays a minor role, as the probability
to completely deanonymize a user is for most settings
higher than the probability to just learn some information
about them. Recipient anonymity in a setting with a
weaker adversary, that compromises no, or only a very
limited amount of nodes presents a noteworthy exception.
Recall that for recipient anonymity we assume that the
ISP of the user is compromised, which means that the
adversary can see which entry node the user connects
to. For different ports the probability of choosing these



entry nodes, however, will be different, because they
might also be possible exit nodes, or related to possible
exit nodes. An adversary that compromises no (only a
very limited number of) nodes can have already a non-
negligible advantage in guessing which port a user might
choose, which can either be expressed by a multiplicative
factor and a δ of zero, or by a non-negligible δ.
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