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Abstract

We introduce a new differentially private regression setting we call Private Regres-
sion in Multiple Outcomes (PRIMO) inspired the common situation in the social
and biomedical sciences where a data analyst wants to perform a set of [ regressions
while preserving privacy, where in each of the regressions the covariates X are
shared, and each regression 7 has a different vector of outcomes y;. We show that
while taking any one of the number of existing private linear regression techniques
and naively applying it / times leads to an increase in error of /I for PRIMO
over the standard linear regression setting, techniques based on sufficient statistics
perturbation (SSP) [Wang|[2018] can be modified to yield greatly improved depen-
dence on [ in a range of common parameter regimes. Our first key insight is that the
data covariance matrix X7 X is shared across the regressions, so when privately
computing this covariance matrix is the main source of error we obtain PRIMO
with no dependence on [ in the asymptotic error. In Section[4.2] via an equivalence
from privately computing the X 7Y term to the problem of private query release
with low [2 error, we adapt the geometric projection-based methods of [Nikolov et al.
[2013] for query release to the PRIMO setting. Under the assumption the labels
Y are public, the projection gives improved results over the Gaussian mechanism
when n < [v/d. In order to give high probability bounds that are required for
analyzing the error of the regression, we give a high probability analysis of the
error of the projection mechanism using a variant of the Hanson-Wright Inequality.
To our knowledge this is the first application of query release algorithms to private
regression. In Section[d.3] we analyze the complexity of our proposed algorithm,
introduced several algorithmic tricks based on matrix decomposition that decrease
the dependence of the running time on [. Finally in Section 4.4 we aim to speed up
our method via sub-sampling, giving an analysis of sub-sampled SSP that makes
heavy use of Matrix Chernoff bounds for sampling without replacement.

1 Introduction

Linear regression is one of the most fundamental statistical tools used across the applied sciences, for
both inference and prediction. In genetics, polygenic risk scores Krapohl et al.|[2018]], Pattee and Pan
[2020a] are computed by regressing phenotype (e.g. disease status) onto individual genomic data
(SNPs) in order to identify genetic risk factors. In the social sciences, we might regress observed
societal outcomes like income or marital status on a fixed set of covariates|Agresti and Finlay|[2009].
In many of these cases where the data records correspond to individuals, there are two aspects of the
problem setting that often co-occur:
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Aspect 1. The individuals may have a legal or moral right to privacy that has the potential to be
compromised by their participation in a study.

Aspect 2. Often multiple regressions will be ran using the same set of individual characteristics across
each regression with different outcomes, either within the same study or across many
different studies.

Aspect 1 has been established as a legitimate concern through both theoretical and applied work.
The seminal paper of Homer et al.|[2008]] showed that the presence of an individual in a genomic
dataset could be identified given simple summary statistics about the dataset, leading to widespread
concern over the sharing of the results of genomic analyses. In the machine learning setting, where
what is being released is a model w trained on the underlying data, there is a long line of research
into so-called “Membership Inference Attacks" |Hu et al. [2021]], Shokri et al.|[2016]], which given a
trained model are able to identify which points are in the training set. Since training set membership
can itself be a sensitive quantity — it may reveal disease status in the genomic example, or income in
the social science example — this is a potential privacy violation. Over the last decade, differential
privacy [Dwork and Roth| [2014] has emerged as a rigorous solution to the privacy risk posed by
Aspect 1. In the particular case of linear regression the problem of how to privately compute the
optimal regressor has been studied in great detail, which we summarise in Subsection 3]

Aspect 2 has been studied extensively from the orthogonal perspective of multiple hypothesis testing,
but until now has not been considered in the context of privacy. The problem of overfitting or
“p-hacking” in the social and natural sciences has been referred to as the “statistical crisis in science"
Gelman and Loken, and developing methods that quantify and mitigate the effects of overfitting
has been the subject of much attention in the statistics and computer science communities [Dwork
et al.| [2015a], |Bassily et al.[[2015]], Korthauer et al.| [2019]. Many methods in the genetic risk score
literature attempt to explicitly combat overfitting |Pattee and Pan|[2020b]], and a recent paper in the
economics community points out that 2 of the most common datasets have been reused to predict
many different outcome variables, leading to misleading estimates of statistical significance |Heath
[2022]. Given the ubiquity of Aspects 1 and 2, this raises an important question:

When computing : = 1...! distinct regressions with a common set of X’s and distinct y,’s,
what is the optimal accuracy-privacy tradeoff?

Interestingly, at a technical level, the problem of multiple hypothesis testing is related to differential
privacy. It has been shown that if each query (in this case regression which is a special class of
query called an optimization query ) is computed subject to differential privacy, then we can obtain a
provable tradeoff between the number of noisy query answers we provide about a dataset and the
extent of overfitting that is possible |Dwork et al.|[2015a]]. This gives a second motivation beyond
privacy for our setting: even when the underlying data is not sensitive, our method can be viewed as a
way to provably prevent overfitting when running multiple linear regressions.

1.1 Results

The primary contribution of this work is to introduce the novel PRIMO problem, and to provide
a class of algorithms that trade off accuracy, privacy, and computation (Subsections @.1l f.2). In
addition to introducing the PRIMO problem, to our knowledge we are the first to apply private query
release methods to linear regression (Subsection [4.2), and to analyze sub-sampled private linear
regression (Subsection [d.4). Our query release results make heavy use of an assumption that Y is
public and X is private, and as such are only applicable to the “public label setting.”

We will show that in a range of common parameter settings, our methods can obtain PRIMO at
minimal cost. [Bassily et al.|[2014]] shows that for private linear regression (PRIMO with [ = 1), we
have the following lower bound on the error:
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Since this lower bound holds for the case when [ = 1, it of course holds for the PRIMO setting where
[ > 1. Throughout the paper this lower bound will serve as a benchmark for the cost to accuracy of
taking [ > 1, and in settings in which the bounds for PRIMO match this lower bound we will say we
have “PRIMO for Free.”



Theorems 4.1} [4.3]imply that if « is the difference between mean squared error of the private estimator
and the optimal estimator averaged over the [ regressions, then with high probability:
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Figure 1: Here cost(?) is the ratio of the error for PRIMO given by Equationto the lower bound in Equation
and M denotes the mechanism used to compute XY

In Figure [1| we summarize the accuracy guarantees implied by Equation [2} where cost(l) denotes
the ratio of the error « to the lower bound in Equation I} When cost(l) = 1 this corresponds to
“PRIMO for Free", and when cost(l) = /1 our upper bound matches that of the naive private baseline
(Equation[3)).

The methods in this paper are a variant of “Sufficient Statistics Perturbation” Vu and Slavkovic|[2009]]

that rely on perturbing X7 X ~ Y and X7y =~ ¥ Xy separately, and then use these noisy estimates
to compute the least squares estimator:

Wi = (XTX+E)™Y x  (XTY; 4 Ey) 3)

noisy covariance term > noisy association term X x

In the error analysis for SSP adapted from Wang| [2018]] (Subsection[4.T)) for each of the ¢ regressions
we decompose the error of the private estimator ;. into the error attributable to the noise added to
the covariance matrix F, and the noise added to the association term E;.

In Section 4.1 we adapt the previously proposed sufficient statistics perturbation (SSP) algorithm of
'Vu and Slavkovic| [2009], Foulds et al.| [2016] to the PRIMO setting. Via a novel accuracy analysis
of SSP for the case when the privacy levels for E1, E5 differ (Theorem .1, we show that since the
noisy covariance matrix is reused across the regressions (as it only depends on X)), by allocating the

majority of our privacy budget to computing this term, we are able to obtain PRIMO for Free when

< min(%, %) When [ is sufficiently small, we obtain PRIMO for Free because the error

term is dominated by the error in computing the noisy covariance matrix, which does not depend on [,
rather than the error from computing the noisy association term.

Given that our PRIMO for Free result in Subsection [4. 1| relies on taking [ small enough that the error
is dominated by the covariance error term, it is natural to ask if, under parameter regimes where the
error from the association term dominates, if we can obtain improved dependence of a on [ over the
V/1 given by the Gaussian Mechanism. This is the focus of Subsection where we start by showing
that computing X 7Y privately is an instance of releasing dl “low sensitivity” queries Bassily et al.
[2015]. Inspecting the dependence of « on the error E, in computing X7Y (e.g. Equation
we see that in order to minimize the error o we want to bound || E»||? with high probability; and
so our focus should be on releasing queries with low mean squared error rather the conventional
worst-case 10ss (Ioo). Our Algorithm 2]is similar to the relaxed projection mechanism of [Aydére et al.
[2021]] except it projects onto a data domain that is in the [ ball rather than relaxing binary attributes
to the hypercube. Via a refined analysis of this mechanism that obtains novel accuracy bounds by



exploiting the geometric structure of our query class, we obtain the surprising result that it is possible
to completely remove the dependence of the error in computing the noisy association term on [ and
improve the dependence on d by a factor of d'/4 albeit at the cost of a factor of /n; if we assume
that our labels Y are public (Theorem [4.2)).

Theorem [4.3] states the error for PRIMO of the variant of Algorithm [I] that uses this projection
mechanism as a subroutine. Inspecting the accuracy bound, we see that when [ > % but % <

% we also obtain PRIMO for Free. This is in contrast to when we obtained PRIMO for

Free for small [ in Subsection[d.1} In this case it is because (i) [ is sufficiently large that the noisy
association term is computed via the projection mechanism rather than the Gaussian Mechanism
(Algorithm 2)) and (ii) n is sufficiently small such that the noisy covariance term dominates the error
of the projection mechanism. It is an open question whether in the private Y setting, there exists a
solution to PRIMO that obtains non-trivial error, and improves upon the mechanism that computes
XTY by adding Gaussian noise.

In Subsections we consider the computational complexity of our methods. In Subsection[4.3]
we show that given the QR decomposition of the noisy covariance matrix and the SVD of the
label matrix Y, standard techniques give a simple way to compute the private estimators for all [.
While SSP (and its adaptive variants) are known to achieve optimal error among private regression
algorithms |Wang| [2018]], iterative algorithms like NoisySGD are often preferred in practice because
of their lower cost per iteration. When n > d > [ cost of SSP variants like our ReuseCov algorithm,
are dominated by the cost of forming the covariance matrix, which is O(nd?) — prohibitively large
for large n, d. To address this shortcoming, in Section .4 we develop a sub-sampling based version
of ReuseCov which estimates the covariance matrix using a random sample of s points — reducing
the computational cost to O(sd?). Analyzing the accuracy of this procedure requires the use of
Matrix-Chernoff bounds for sampling without replacement developed in [Tropp| [2010]], which we
must integrate with the error analysis of SSP in the stye of Wang| [2018]].

2 Preliminaries

We start by defining the standard linear regression problem. Given X € X™ C R"*% ¢, € Y™, and
parameter space W, for w € W let

1 n
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n
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be the linear regression objective, and denote by Wi = arg min,, f(w) = (X TX)=1XTy; the
ordinary least squares estimator (OLS). Let f(w) = 2 37 (w -z, — yix)? + A||w||3 the ridge

regression objective, and let w7, = argmin,, fy(w) = (nXTX + M)t X Ty,
The definition of data privacy we use throughout is the popular (g, 0)-differential privacy introduced

in|Dwork et al.| [2006]. We refer the reader the to[Dwork and Roth|[2014]] for an overview of the
basic properties of (g,0) — D P including closure under post-processing and advanced composition.

Definition 1. Let M : (X x Y)" — O a randomized algorithm taking as input a dataset of n. records.
We say that (X,Y) ~ (X', Y') € (X x Y)" if Az, yz',y' such that (X, Y) U {z',y/'}/{z,y} =
(X",Y"). Then we say that M is (¢,0)-DP ifV(X,Y) ~ (X", Y"),0 C O:

PriM(X,Y) € o] < e PrM(X",Y') € 0] + & 4)
In the less restrictive case where Equation 4| holds only over adjacent X ~ X’ with the same fixed Y/,
we say that we have differential privacy in the public label setting, which we consider in Section 4.2}

We now formalize the Private Regression In Multiple Outcomes (PRIMO) problem.

Definition 2. PRIMO. Letx; € X C R, y;; € Y, fori=1...n,j =1...1. Let X,,xq the matrix
with it row x;, and let Y, 5, the matrix with j*" column y;i = (Y14, - - Ynj)- The optimal solution
W* to the PRIMO problem is

Wr= i Zjixw - v
WewlCRdxln



Given a randomized algorithm M : (X x Y™ — W!, we say that M is an (o, 3, ¢, §) solution
to the PRIMO problem if (i) M is (g, d)-DP with respect to (X,Y") (or just X in the public label

setting), and (ii) with probability 1 — 5 over W ~ M:

Lo 1
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While y; will denote the vector of n outcomes for the j th outcome, throughout 7* will denote the
vector of [ outcomes corresponding to individual i € [n].

The most basic (g, 0)-mechanism is the Gaussian mechanism, which we make extensive use of
throughout the paper.

Lemma 1. GaussMech(e,d,A) |Dwork and Roth| [2014] Let f : X" — R an arbitrary d-
dimensional function, and define it’s sensitivity Ao(f) = supx..x/ ||f(X) — f(X')||2, where

X ~ X' are datasets that differ in exactly one element. Then the Gaussian mechanism re-
leases f(X) + N(0,02), and is (e, 6)-differentially private for o > c(g,8)As(f), where c(e,8) =

V21og(1.25/6 /.

Throughout the remainder of the paper, and particularly in the proofs in the Appendix, we will make
heavy use of common matrix and vector norms. For a vector v € R? and matrix A € R4 ||v]|% =

V' Av, ||A|3 = Amax (ATA), |03 = S0 02, |42 =5

i.jeld) By
3 Related Work

Private Linear Regression. Private linear regression is well-studied under a variety of different
assumptions on the data generating distributions and parameter regimes. Typically analysis of
private linear regression is done either under the fully agnostic setting where only parameter bounds
[|X1], 11V]], [IW)]] are assumed, under the assumption of a fixed design matrix and y generated by a
linear Gaussian model (the so-called realizable case), or under the assumption of a random design
matrix Milionis et al.|[2022]). In this paper we focus on the first fully agnostic setting, because in our
intended applications within the social and biomedical sciences in general we neither have realizability
or Gaussian covariates. In the fully agnostic setting |Wang| [2018]] provides a comprehensive survey of
existing private regression approaches and bounds, including proposing a new adaptive technique.

Broadly speaking, techniques for private linear regression fall into 4 classes, sufficient statistics
perturbation (SSP)|Vu and Slavkovic|[2009], Foulds et al.| [2016]], Objective Perturbation (ObjPert)
Kifer et al.|[2012], Posterior sampling |Dimitrakakis et al|[2013]], and privatized (stochastic) gradient
descent (NoisySGD) (Chaudhuri et al.[[2011]]. The methods in this paper are a sub-class of SSP-based
methods, which correspond to Algorithm [T] where [ = 1.

In the fully agnostic case, there are two regimes for private linear regression, each with upper bounds
on empirical risk achieved by the algorithms above, and corresponding lower bounds stated below.
The regimes depend on how well-conditioned the covariance matrix X7 X is. Letting a* be the
inverse condition number we have the following lower boundsBassily et al.| [2014]):

at 501X WL

° *>
When o 2 — e

, then:
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f(@) = f(w") > min{[|Y| }

* We always have (even when X T X is ill-conditioned):

V(| X[V + XL

ne

Fw) = f(w*) > min{||V[]%, }

Two techniques, NoisySGD and ObjPert both achieve the minimax lower bounds in both settings,
although in order to achieve the minimax rates their hyperparameters depend on the unknown ||[W]|
and o, and so Wang| [2018]] proposes two adaptive methods that are based on Sufficient Statistics
Perturbation, and are able to achieve optimal bounds in both settings. In Subsections we state
our theoretical results under the ill-conditioned setting as it is the most general, although analogous
results hold in the well-conditioned setting as well.



Now given any (¢, 6)-DP algorithm for computing w; privately, we can use it as a sub-routine to
solve PRIMO by simply running it [ times to compute each row of W. Hence by running any of
the optimal algorithms [ times with parameters ¢’ ~ £/+/1, ' ~ 6 /1, by advanced composition for
differential privacy Dwork and Roth|[2014] we can achieve, subject to (e, §)-DP:

:O(W(I\XIIQHWHQJrIIXHIIWIIII)?H
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So for a fixed privacy budget ¢, this naive baseline is a factor of /I worse than in the standard private
regression setting where [ = 1.

ne

Query Release. In Subsection We show that privately computing the association term %X Ty
is equivalent to the problem of differentially privately releasing a set of [ - d low-sensitivity queries
Bassily et al.|[2015]]. In the case where X, Y are both private, this corresponds to releasing a subset of
l - d 2-way marginal queries over d + [ dimensions, which is well-studied|Dwork et al.| [2015b]}, Thaler|
et al.[[2012], Ullman and Vadhan|[2011]]. Theorem 5.7 in|Dwork et al.|[2015b]] gives a polynomial
time algorithm based on relaxed projections that achieves mean squared error O(n\/ d + 1), which
matches the best known information theoretic upper bound [Dwork et al.|[2015b]], although there
is a small gap to the existing lower bound min(n, (d + [)?). This relaxed projection algorithm

outperforms the Gaussian Mechanism when nvd+1 < ld = n < \/% = dvd+1>n.

Since the mean squared error of Algorithm [I] that used this projection as a subroutine is at least
dT\/dT'l, this means that in the regime where the projection outperforms the Gaussian Mechanism, we
do not achieve mean squared error < 1 in our regression. However, in the less restrictive but still
practically relevant setting where the labels are public, we are able to obtain greatly improved results
by using a projection-based method instead of the Gaussian Mechanism, as summarised in Figure
and presented in Subsection 4.2

Linear Queries under /,.-loss. Beyond 2-way marginals, the problem of privately releasing
large numbers of linear queries (Definition [3) has been studied extensively. It is known that the

. . 1/4
y/log(|Q])(log l:il log(1/4)) 7 ViQl 10g(1/5))_ The first term, which

worst case error is bounded by min( p

dominates in the so-called low-accuracy or “sparse” (Nikolov et al.| [2013]]) regime, is achieved
by the PrivateMultiplicativeWeights algorithm of [Hardt and Rothblum)| [2010], which is optimal
over worst case workloads [Bun et al|[2013]]. However, this algorithm has running time exponential
in the data dimension, which is unavoidable [Vadhan| [2017]] over worst case Q. The second term,

which dominates for n > W’ the “high accuracy” regime, is achieved by the simple and

efficient Gaussian Mechanism [Dwork and Roth| [2014]], which is also optimal over worst-case sets of
queries Q Bun et al|[2013].

Linear Queries under /5-loss. For the [5 error, in the high accuracy n > |Q| regime the factoriza-
tion mechanism achieves error that is exactly tight for any workload of linear queries Q up to a factor
of log(1/9), although it is not efficient (Theorem [Edmonds et al{[2019]). In the low-accuracy regime,
the algorithm of [Nikolov et al.| [2013]] that couples careful addition of correlated Gaussian noise (akin
to the factorization mechanism) with an /;-ball projection step achieves error within log factors of
what is (a slight variant) of a quantity known as the hereditary discrepancy opt, 5(A,n) (Theorem
Nikolov et al.|[2013])). This quantity is a known lower bound on the error of any (¢, §) mechanism for
answering linear queries Muthukrishnan and Nikolov|[[2012], and so the upper bound is tight up to log
factors in |Q|, | X|. Theorem 21 in|Nikolov et al. [2013]] analyzes the simple projection mechanism
that adds independent Gaussian noise and projects rather than first performing the decomposition step
that utilizes correlated Gaussian noise, achieving error O(ndlog(1/6)+/log | X|/€), which matches
the best known (worst case over Q) upper bound for the sparse n < d case (Gupta et al.|[2011].
In our Theorem we give such a universal upper bound, rather than one that depends on the
hereditary discrepancy of the matrix Y. While the bound can of course be improved for a specific
set of outcomes Y by the addition of the decomposition step to the projection algorithm, we omit
this step in favor of a simpler algorithm with more directly comparable bounds to existing private
regression algorithms.

Low-sensitivity queries. When Y is public, computing %X T4 is not an instance of releasing the
answers to 2-way marginal or even linear queries, but is an instance of releasing the answers to dl



“low-sensitivity” queries Bassily et al.|[2015]], or queries that are not necessarily an average over
points in the dataset like linear queries, but still have the property that changing any single point
in the data set only changes the magnitude of the outcome by O(1/n). For the general case of
low-sensitivity queries, the Gaussian Mechanism achieves the same [, [ error, and in the [, sparse

~ 2 /
case the MedianMechanism of Blum et al.|[2011] achieves error roughly O( log(IQ\%#bglel) Dworkl

et al.| [2010]. While less is known about the optimal [ error for arbitrary low-sensitivity queries,
it clear that geometric techniques based on factorization and projection do not (at least obviously)
apply, since there is no corresponding notion of the query matrix Ag.

While the information-theoretic [, or s error achievable for linear queries is well-understood
Edmonds et al.|[2019]], Nikolov et al. [2013]], [Bun et al.| [2013]], as synthetic data algorithms like
PrivateMultiplicativeWeights and MedianMechanism, or the factorization or projection mechanisms
are in general inefficient, there are many open problems pertaining to developing efficient algorithms
for specific query classes, or heuristic approaches that work better in practice. Examples of these
approaches along the lines of the factorization mechanism McKenna et al.|[2018| 2019], efficient
approximations of the projection mechanism|Aydore et al.|[2021]], Dwork et al.|[2015b], and using
heuristic techniques from distribution learning in the framework of iterative synthetic data algorithms
Yoon et al.|[2019], Torkzadehmahani et al. [2020], Beaulieu-Jones et al.|[2019]], Neel et al.|[2019]].

Projection mechanisms and Algorithm[2] Since we make heavy use of these projection mech-
anisms in Subsection d.2]in the public label setting, we elaborate on the difference between the
existing methods and our Algorithm [2] below.

The most technically related work to our Algorithm 2]is[Aydére et al| [2021]], which is itself a variant
of the projection mechanism of Nikolov et al.[[2013]]. There are several key differences in our analysis
and application:

* The projection in |Nikolov et al.|[2013] is designed for linear queries over a discrete domain,
and runs in time polynomial in the domain size. Algorithm 2]allows continuous X', ) and
runs in time polynomial in n,d,[. Like the relaxed projection mechanism |Aydore et al.
[2021]], when our data is discrete we relaxing our data domain to be continuous in order to
compute the projection more efficiently. Unlike in their setting which attempts to handle
general linear queries, due to the special structure of our queries our projection can be
computed in polynomial time via linear regression over the l5 ball, as opposed to solving a
possibly non-convex optimization problem.

* Moreover, due to this special structure we can use the same geometric techniques as in
Nikolov et al| [2013] to obtain theoretical accuracy guarantees (Theorem[4.2)). Nikolov et al.
[2013]] bound the accuracy of their mechanism with respect to the expected mean squared
error. Due to the necessity of analyzing the error of private regression with a high probability
bound, rather than expected error, we prove a high probability error bound for the accuracy
of the projection mechanism (Theorem[4.2). This requires application of the Hanson-Wright
Inequality for anisotropic sub-Gaussian variables |Vershynin|[2019].

Sub-sampled Linear Regression. In Subsection 4.4 we analyze SSP where we first sub-sample a
random set of s points without replacement, and use this sub-sample to compute the noisy covariance
matrix. Sub-sampled linear regression has been studied extensively absent privacy, where it is known
that uniform sub-sampling is sub-optimal in that it produces biased estimates of the OLS estimator,
and performs poorly in the presence of high-leverage points Derezinski et al.| [2018]]. To address
these shortcomings, techniques based on leverage score sampling |Drineas et al.|[2006], volume-based
sampling |Derezinski and Warmuth| [2017]|Derezinski et al.|[2018]], and spectral sparsification Lee
and Sun [2015]] have been developed. Crucially, in these methods the probability of a point being
sub-sampled is data-dependent, and so they are (not obviously) compatible with differential privacy.

4 Methods

In Subsection4.1| we develop our SSP-variant ReuseCov as a solution to the PRIMO problem. We
give an error analysis of SSP for private linear regression where the noise levels for the covariance
and association terms differ, and use this to examine when the asymptotic error of PRIMO matches



the error of private linear regression ("PRIMO for Free"). In Subsection[d.2] we focus on the noisy
association term, and give a reduction to the problem of private release of low-sensitivity queries. We
show that for sufficiently large [, computing the association term via projection Algorithm 2| gives
a polynomial improvement in error over the Gaussian mechanism when [ is sufficiently large. In
Subsection 4.3 we address the computational complexity of Algorithm[3] Finally, in Subsection Eg]
we address the high computational cost of computing the full covariance matrix X7 X in O(nd?),
and show how sub-sampling the covariance matrix allows us to trade-off computation with accuracy.

4.1 ReuseCov

Algorithm 1 Input: s, \, ¥ € X" C R Y = [y1,...y] € Y*", privacy params: €, §
A — ReuseCov
Draw Ey ~ Ng(a41/2(0, 0?), where o1 = %2«/210g(2.5/6)||2\?|\2/e

1:

2: Compute [ = (2XTX + By + \I)~!

3: Draw © = [01,...0;] ~ M(€/2,6/2,X,Y)
4: for i=1...1

5: Setwi :Iﬁl

6: end for

7:

Return W = [y, . . . ]

In the analysis of the ridge regression variant of SSP, which corresponds to Algorithm[T|with [ = 1,
Equation 13 in|Wang|[2018] shows w.p. 1 — p:

- d d
Wx)—f(wix) = O | ————||X|2||V||? + ————— || X||*|WV| > + IR
F2)=fwie) = O | g IR + g 11w Il
error due to ridge penalty
association error term covariance error term

(6)
Inspecting these terms, we see that:

Insight 4.0.1. When ||X||[|W|| > ||V|| the error is dominated by the cost of privately computing
XTX, rather than privately computing X" y.

We now turn back to our PRIMO setting, and imagine independently applying SSP to solve each of
our [ regression problems. By the lower bounds in [Bassily et al.[[2014]], given a fixed privacy budget
this incurs at least a v/I multiplicative blow up in error. However, we notice that when our private
linear regression subroutine is an SSP variant, this naive scheme, of running ! independent copies of
SSP is grossly wasteful.

Insight 4.0.2. Since the X matrix is shared across the different regression, we can simply compute
our noisy estimate of X* X once, and then share that noisy covariance matrix across all of our
regressions.

Combining insights 1 and 2, we present Algorithm where M can be any (¢/2,6/2)-DP algorithm
for estimating XY
In line 2 we take €; = ¢/2, and €2 = O(%) allocating most of our privacy budget for the “harder"

one-shot task of computing X7 X, and thus necessarily adding more noise to the association term.
By advanced composition Dwork and Roth![2014] this ensures (e, §) privacy overall, and propagating
these noise terms into Equation [§] gives:

Theorem 4.1. With M = GaussMech(e/2,5/2, A = LV/1||x|||V|]), Algorithmis an (o, p,€,9)
solution to the PRIMO problem with

~ . d|| X142 1d]|Y]?)| X2
QOOMM||¥|+|M|”)7 -

n

where ||w||? = %HW*\

2, and O omits terms polynomial in 1.1og(1/6),1og(1/p).



While we defer the formal proof to the Appendix, the proof follows the analysis in [Wang| [2018]]
that uses Lemma [§] (essentially the Woodbury matrix inversion formula) to expand the difference
||« — w;||x7 x into the form in Equation 23]in the Appendix:

O | 1Brwiul[Fxr x4 an-1 + N llwisl [xr xcpan-1 + 1Bl lExrxian-1 |

covariance error regularization error assocation error

The bound follows from using a Johnson-Lindenstrauss type lemma (Lemma [TT]) to bound the
||E1]],||E2|| terms, substituting in the noise levels in Algorithm|I] and optimizing over .

Inspecting Theorem 4.1} we see that when | < min(-= W), Algorithm |1| with M the

) R NZZINIIE
Gaussian mechanism achieves error O (w) Since this matches the lower bound in

Equation [T) for a single private regression in this case we say that we have achieved "PRIMO for
Free."

4.2 Private Query Release

The improvement of Algorithm |I| over the naive PRIMO baseline in the previous sections make
heavy use of the fact that the asymptotic error is dominated by the covariance error term. In the case
when M is the Gaussian mechanism, if we are in the regime where the association term dominates,
ReuseCov still incurs a v/I multiplicative factor in the error term, which does not improve over the
baseline. In this section we show that via a reduction from computing the association term to private
query release via synthetic data, if we are only concerned with privacy in the Xs, the public label
setting, we can obtain improved bounds for PRIMO over the naive baseline and ReuseCov for certain
ranges of (n,l,d).

Let us reconsider the problem of privately computing the association term X7Y where Y € J"¥!,
and X € X" C R4*" and Y is considered public, so our data release needs only be DP in X . Define
the query gy : X™ — [0,1] = La]y; be the function that takes input X, and outputs the k' element
of %XTyj. Or if e, € R? is the k'" basis vector, ar;(X) = %ekXTyj. It will be convenient for
us to write ¢(-) as a single inner product. Let vec(X) = (211, .-+, T1n, T21, - - Td1, - - - Tdn) € R,
and given y = vec(X), let mat(y) = X. Denote by cj; € R™® the vector that has all zeros except in
positions (k — 1)n +1,... kn it contains y1;, ... ~yn;. Then it is clear that gx;(X) = ¢, vec(X),
so if we let C' € {0, 1}4%" be the matrix with row kj € [dl] equal to cy;:

lXTY =C - vec(X)
n

Given z3; € X, let m = (k — 1)n + j be the corresponding column of C, and let ¢™ denote this
Vi

column. Then |[¢™ |2 = ||(y1), ... yij)ll2 = L||y?||2 < %! which will be useful in a moment.

The class = (g, ) fall into what is known as a low-sensitivity queries Bassily et al.| [2015]], because
changing one row of ¢ of X, changes at most one entry %xkiyji of z! y;, which changes the result

by at most w It is important that Y is considered public here, as the queries are defined as a
function of Y. If we wanted to guarantee privacy in the Y’s, we would have to define our query class
as taking input (X,Y) € (X x Y')", making the dimension of our data d + [ rather than d. This
blowup in dimension ends up negating any gains in accuracy from the synthetic data method, in the
regime where the linear regressor obtains non-trivial accuracy, as discussed in Subsection [3] We now
present our projection-based subroutine for privately computing X 7Y



Algorithm 2 Input: X € X" C (RH)"™, Y = [y, ...y € Y*", privacy params: ¢, 6,
Inner Product Projection Mechanism

1: Formulate C' = C(Y') € [0, 1]dxdn yec(X).

Letr = &9 Supieu:l\\y’\lwll?(llz

Sample w ~ N(0,1)%

Let g = Cvec(X) + rw

Let § = argmin ¢ - ||g — g|[3, where K = C(n||X|[3By).

Outputting § in Line 4 corresponds to the Gaussian Mechanism, and has mean squared error 72 =

O(ZWUL#HQ) Theorem shows that the projection in Line 5 reduces error by a multiplicative
factor of %. The crux of the proof is Lemma [2| which quantifies the reduction of error achieved by
the projection step, which is the main workhorse behind the results in Nikolov et al.|[2013]], but has
been folklore in the statistics community since at least Raskutti et al.|[2009].

Lemma 2 (Raskutti et al. [2009]). Let K C RY be a symmetric convex body, let g € K, and

g = g+ w for some w € RY. Then if § = argming c || — g'||3, then
19— gl13 < min{4|[wl][3, 4|w|[x-}

Theorem 4.2. Let M denote Algorithm@] M is (e, 9) differentially private, and if G ~ M, then
with probability 1 — p :

%Hg—éll% =0 G@ﬁ)@%)

Proof. For c(e,8) = /2log(1.25/6)e, M is (e, §) differentially private by the Gaussian Mechanism
and post-processing Dwork and Roth|[2014]]. So we focus on the high probability accuracy bound.
By Lemma 4 from Nikolov et al.|[2013]] we have that:

1§ —gll5 < 4llrwl|xe =7 sup x - w (8)
zeK

Since K C (n||X||?)C By, and using the fact that the I norm is self-dual, we have:
19— gll3 < 4r||wllxe < 4r(|X[|V/n sup (C'z) - w = 4r[|X[[v/n|CTwl[ ©)
z€b1

So in order to bound ||§—g||3 with high probability it suffices to bound ||CTw/||, with high probability.
This is the content of the Hanson-Wright Inequality for anisotropic random variables |Vershynin
[2019].

Lemma 3 (Vershynin|[2019]). Let CT anm x n matrix, and X ~ N(0,1)™ € R™. Then for a fixed

constant ¢ > 0: )

—ct
PLICTX|| = |IC]|r | > 1] < 2exp(-=r—)
IC|F

Lemmashows that ||CTwl||2 = O(||C||r+/log(2/p)) with probability 1 — p. Since ||c¥||2 = H?jz”
for every column k = 45,4 € [n],j € [d] of C, ||C||F = w
Plugging in the value of r gives, with probability 1 — p:

1 1 dy i )P ,0)[|X Ay

dlE[||g—g||§]=0(dlw||X||Zz;;'y”\/logm/p)‘(e NI "y'2> (10)

ele,0)T0m 2/ T St I sus 1€
nivd

; 1D

Since both terms involving Y in the numerator are < v/I|||| the bound follows. We note that since
Y is public, in practice we can compute these terms rather than using ||}, the worst case bound. [J

10



We note that the mean squared error of the Gaussian mechanism without the projection is O(r?) =

O(WH:%), which for Iv/d >> n is strictly larger than the error of the projection mechanism.
We also note that the bound in Theorem [.3]is strictly better than the error given by applying the
Median Mechanism algorithm of [Blum et al.|[2011]] for low-sensitivity queries, which is tailored for
lo error, and which also requires discrete X'. For example, when ) = {0,1}, X = {0,1}, then
I|V|| = 1,]|X]|] = V/d, and so Theorem gives a bound of O(%d) whereas the Median Mechanism
gives O(W) for the mean squared error.

We now state the accuracy guarantees of Algorithm [I|with M given by Algorithm 2]

Theorem 4.3. Let A denote the label-private variant of Algorithm[I| where M is Algorithm 2| with
privacy parameters (€/2,6/2). Then Ais an (o, p, €, ) solution to the PRIMO problem with

)

5 1| (I [ ANIRIESIS
n2

a=0 [l -

where ||@||> = 3||W*||%, and O omits terms polynomial in 1 log(1/6),1og(1/p).

Proof. We start with our usual expansion of f(w;) — f(w;x), up until Equation 24} we have with
probability 1 — p for every ¢ € [I]:

~ d 1

)= (010) = O (5 e ) (2 ) 4 Al + 5 1Bl )
12)

Aggregating over ¢ and rearranging gives:

n d 1 1¢

= 0;)— fwi) = O | ————|0]]2(||X|*/€?) log(2d? MNo|]2 4+ ———= Esl|?

3 J(@=fw) (Amm“w (11 /)l p) + Nl + 57 3wl )
13)

where [|@]2 = 13 ||lwi][> = }||W*||%. Then by Theorem we have with

3 1 Bail B = O (ele, 6)\/log(2/p)nv/dl[Y][2]|:X||?) with probability 1 — p. So with proba-
bility 1 — 2p, we have 2 S| f(10;) — f(wi) =

A d ~112 4/ 2 2 A2
0 (5 PO ) w2 ) + ol +

c(e,an/log(z/p)m/aw|2||X|2)
(14)

Amin + A

Finally optimizing over A gives the desired result:

5 ||UA)||\/d||U7||2(|/'V||4/62)10g(2d2/p)+0(67<5)\/10<%‘(2/P)\/<3||3’|2||f"~’|2
n2 n

o =

O

Inspecting Theorem 4.3]in the regime where the projection improves the error over the Gaussian

. n V|| x| w2
Mechanim [ > > When n < IMIE

O (w , and so we achieve PRIMO for Free. When n is sufficiently large the dominant
IIdel/“llyHllel)
\/ﬁ

is not too large, the dominant term in the error is

which is a factor of —*; worse than the lower bound.

error term is O ( /7

4.3 Computational Complexity

The computational complexity of Algorithm [I]can be broken down into 3 components:

11



* Step 1: Forming X7 X, (nd? or much faster)
« Step 2: the cost of computing I ~'0; = (X7 X + M + ) ~'9; Vi € [I], (d® + 1d?)

* Step 3: In the case where M is the projection algorithm, computing the projection
argmin, ¢ o x| — 9i[3, (nl min(n, 1) + nd + nld via diagonalization)

Forming the covariance matrix X7 X is a matrix multiplication of two d x n matrices, which can
be done via the naive matrix multiplication in time O(nd?), and via a long-line of “fast” matrix
multiplication algorithms in time O(d?+*(™)); for example if n < d' it can be done in time that
is essentially O(d?) [Gall [2012]]. Step 2 can be completed by solving the equation T = V1 =
1...1 via the conjugate gradient method, which takes time O(~(I)d?log(1/e)) to compute an e-

approximate solution Mahoney| [2011|] where ~([) is the condition number. We note that this has
to be done separately for each i = 1...[ giving total time O(l - v(I)d? log(1/¢)). Alternatively, an
exact solution /~'9; can be computed directly using the QR decomposition of the matrix I. The

decomposition I = QR can be computed in time O(d?) [Mahoney| [2011] and does not depend
on the ¥;, after which using Rw; = QT'v;, w; can be computed in time O(d2) via backward
substitution. This gives a total time complexity of O(d® + 1d?). So if d and ﬁ are sufficiently
small relative to [, e.g. if I = Q(d/(y(I))), it will be faster to use the QR decomposition based
method. The projection in line 5 corresponds to minimizing a quadratic over a sphere. Setting
A=CTC e RInxdn p = 2075 € R¥, then © = (Cn||X||?)z, where x € R" is the minimizer
of:

min 2zt Az — bz (15)
reB;
st [[zl2 < VAllX| (16)

Now, given the spectral decomposition of A = UAU”, and the coordinates of b in the eigenbasis
UTb, Lemma 2.2 in|Hager [2001] gives a simple closed form for - that computes each coordinate in
constant time. Since there are nd coordinates of z, this incurs an additional additive factor of O(nd)
in the complexity, which is dominated by the cost of diagonalizing A. So the complexity of this step
is the complexity of diagonalizing A = C7 C, or equivalently finding the right singular vectors of
C, plus the complexity of computing U7 b. This is seemingly bad news, as C' € R¥* is a very
high-dimensional matrix, and the complexity for computing the SVD of C without any assumptions
about its structure is O(d®Inmin(l, n)) Golub and Van Loan|[1996]. However, it is evident from the
construction of C' in Subsection , that C' = Iy ® Y, where ® is the Kronecker product. Then

if LAVT is the SVD of Y7, standard properties of the Kronecker product imply that the spectral
decomposition of CT C is:

C=— (LL)(I;o NIV — (17)

CTC =T V)Ige A)(I;oVT) (18)

S

Hence we can compute SPEC(C) in the time it takes to compute SVD(Y), or O(nl min(n,1)).
Similarly, to efficiently compute the U”'b term required for Lemma 2.2 Hager [2001]] we can again
take advantage of properties of the Kronecker product, U7'b =

1
(I;@V)120Tg =2(I; @ VT (I; ® 51/)@ =
1 2
21y ® EVTy)g = Vec(ﬁVTYmat(g)),

where mat(g) is the [ x d matrix with row ¢ given by elements ({(i — 1) +1,...,{(i — 1) + [ of g,
and the last equality follows properties of the Kronecker product. Now V7Y = AU which can be
computed in O(In) since A is diagonal. Multiplying by mat(§) can be done in another O(nld), for
total complexity of O(nl max(min(n,1),d)).

Putting the complexity of these steps together we get:

Theorem 4.4. The complexity ofAlgorithmE] is O(max(min(ni?,n2l), nld, nd?,1d?, d*)).

12



Algorithm 3 Input: A\, ¥ € X" C R¥>*" Y = [yy,...y] € Y'X™", privacy params: €, 5. We denote
by B the Algorithm in Lemma 2.2 [Hager [2001]

A — ReuseCov

Draw E; ~ Nyat1)/2(0,01), where o1 = 12,/210g(2.5/68)||X || /e
Compute [ = (LXTX + By + \I)
Compute the QR decomposition I= QR
Draw © = [d1,...%;] ~ GaussMech(e/2,5/2, A = LV/1||X][||V|])
Compute SVD(YT) = UAVT
Compute ¢ yy0 = B(V, A, 0)
for i1 =1...1
Solve Rw; = QT@' by back substitution.
end for
Return W = [y, . . . ]

PR IADIN A RN 2

—_

4.4 Sub-sampling based ReuseCov

The discussion in the previous section shows that when n > d > [, the complexity of Algorithm 3]is
O(nd?) or the cost of forming the covariance matrix. In this section we show how sub-sampling s < n
points can improve this to O(sd?) by giving an analysis of sub-sampled SSP. The key ingredient is
marrying the convergence of the sub-sampled covariance matrix to X Z X with the accuracy analysis
of SSP we saw in Section .11

Algorithm 4 Input: 5, \, X € X" C R Y = [y,...y] € Y*", privacy params: €, §
A — SubSampReuseCov

1: Sub-sample s points without replacement from X', we denote the sub-sampled design matrix by
Xs.

2: Let (e1,01) = (%€/2,0/2)

3: Draw Ey ~ Nyat1)/2(0,0%), where o1 = 12,/210g(2.5/6)||X||* /€1
4: Compute [, = (AXITXs+E +AI)

5: Draw & = [0y, ...%;] ~ GaussMech(e/2,6/2, A = LV1||X|[||V|])

6: for i =1...1 .

7: Set’lﬁi = IS ’lA]Z

8: end for

9: Return W = [wy, . . . W]

Our algorithm is based on the observation that if we sub-sample S C [n], |S| = s points without
replacement then:

* The cost of computing the covariance matrix ©g = >, o g zxa is O(sd?)

* By the “secrecy of the sub-sample" principle Dwork and Roth| [2014]], our privacy cost for
estimating g is scaled down by a factor of s/n

» With high probability for sufficiently large s, ¥ g — X by a matrix-Chernoff bound for
sampling without replacement Tropp|[2010]

Theorem 4.5. With M = GaussMech(e/2,5/2,A = LV1||x]|||y
(ar, p, O(€), ) solution to the PRIMO problem with

a=0 (||w|¢||X|||y||<Wj/p>>+d<l+ 10g<2d/p>>.<lixl%ﬂwu“W))

), Algorithm W\ is an

A s s5te2

Proof Sketch. Our analysis will hinge on the case where [ = 1 e.g. that of standard private linear
regression, which we will extend to the PRIMO case by our choice of e as in the proof of Theorem4.1]
Now let:

13



wix = (XTX)71XTY the least squares estimator as before

s w) = (LXTX 4+ AI)7'LXTY the ridge regression estimator

s wy = (1 XTXg+ A)7H(LXTY) the sub-sampled least squares estimator
(1XEXs+ Ey + M)"HEXTY + E,) our differentially private estimate of w,

.ws

We note that 0 < f(w) — f(wis) < A ([[wis][* = [[w][?) < A[[W]|?. Then by the Lemma |§Iand
Cauchy-Schwartz with respect to the norm || - || xrx :

|f(s) = fwi)| = || — wis|5erx <

n

Bllwse — whlry + 3llwd — wlPers +3lhwy — @alAry <

n n n

BAIWIPZ + 3lfws —wislfiry + 3l1@s —will3ry  (19)

Matrix Chernoff SSP analysis+Matrix Chernoff

So it suffices to bound each term with high probability. The second term, || — ws||xT x4 27 can
be bounded using the same arguments as in Theorem [4.1] with small differences due to scaling.
Crucially though, as we need to bound this in the norm induced by X7 X rather than X% Xg, we

will need to utilize the convergence of X¥ Xg — X7 X via Matrix-Chernoff bounds.
Lemma 4. Under the assumption ||X|| = O(nX), then w.p. 1 — p/2:

x| d log(2d/p) n NIX[PIYI? - dlog(2d/p)
n2e? A s n2e2 A s

W% - ) (20)

|Jws — Ws|| xrx = O(
m

Bounding the first term can be reduced to bounding ||I — (%XTX)’UQ(%XéFXS)(%XTX)*l/2 |2
which follows more directly via the Matrix-Chernoff bound for sub-sampling without replacement:

Lemma 5. Under the assumption ||X|| = O(nX), then w.p. 1 — p/2:

X log(2d
o = s 0 (12 s34

Substituting into Equation [20[and minimizing over A gives the desired result.
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S Appendix

5.1 Lemmas and Definitions

Definition 3. Statistical Query Kearns|[|1993|] Let D € X™ a dataset. A linear query is a function
q: X — [0,1], where q(D) := iZZiGD q(z;)-

Definition 4. |Kasiviswanathan et al.| [2010] Let X = {0,1}", and Qi = {¢ij }1<ir<iz<in<m.,
where q;;(x) 1= HZ:1 x;,. Then the class Qy, are called k—way marginals.

Lemma 6. Tropp [2010] Let Z; € ST, and sample Z1, . . . Zs without replacement from {Z1, . .. Z,, }.

Suppose E[Z;] = 14, and max;c|,) Amax(Z;) < B. Then for 6 = %jm/’)), with probability
1—0p:

1 s 1 s
)\max(gzzi) < 1+6> /\min(gzzi) > 1_6
i=1 i=1

Lemma 7 (folklore e.g. [Wang et al. [2018])). Given a dataset X" of n points and an (€, §)—DP
mechanism M. Let the procedure subsample take a random subset of s points from X" without
replacement. Then if v = s/n, the procedure M o subsample is (O(ve),y§)—DP for sufficiently
small e.

5.2 Proofs from Subsection d.1]

The following lemma is used repeatedly in analyzing the accuracy of all SSP variants.

Lemma 8. Ler A, B invertible matrices in R™*", and v, ¢ vectors € R™.

Then
A —(A+B) (v+c)=(A+B)'BA v - (A+B) ¢

Proof. Expanding we get that:
A0 —(A+B) (v+e¢)= (A" = (A+B) o — (4+B) e,
so it suffices to show that:

(A~ (A+B) YHYv=(A+B)'BA
Now the Woodbury formula tells us that (A + B)™* = A~! — (A + AB~'A)~!, hence
(AP~ (A+B) HYv=(A+AB'A) v = (AU + B 'A) 1
Then since:
(AI+ B 'A) ' =(I+B'A) A =B HB+A) ™ =[B+A)"'BA,

we are done. O

Proof of (¢, §)-DP in Theorem 4.1
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Proof. The privacy proof follows from a straightforward application of the Gaussian mechanism. We
note that releasing each 9; privately, is equivalent to computing XY + E5, where Ey ~ Ngy;(0, 03).
Now it is easy to compute [-sensitivity A(f) of f(X) = XTY. Fix an individual 7, and an adjacent
dataset X' = X/{;, yi }U{al, g/} Then F(X) = F(X") = Ay = [yiai—yaly, - - yiuwi— /sl
Then:

l
IF(X) = FN =\ IAVIE = | D g — vl |12 < V- A[XPYIR = 2V x|
j=1

Hence setting o5 = 2/210g(2.5/6)2V/1||X|||)|| /€ by the Gaussian mechanism |Dwork and Roth
[2014] publishing V satisfies (¢/2,5/2) — DP. Similarly if g = X7 X, A(g) < || X][?, and so
setting 01 = 21/210g(2.5/8)||X||? /¢, means publishing I is (¢/2, §/2)-DP. By basic composition
for DP, the entire mechanism is (e, §)-DP. O

Proof of Accuracy in Theorem 4.1}

Proof. We follow the general proof technique developed in |Wang| [2018] analysing the accuracy
guarantees of the ridge regression variant of SSP in the case Ay, (X7 X) = 0, adding some
mathematical detail to their exposition, and doing the appropriate book-keeping to handle our setting
where the privacy level (as a function of the noise level) guaranteed by F; and E5 differ. The reader
less interested in these details can skip to Equation [25|below for the punchline.

Fix a specific index ¢ € [I], and let y = y;. We will analyze the prediction error of w; e.g.
F(w;) — F(w}). Then the following result is stated in[Wang|[2018]] for which provide a short proof:
Lemma 9.

F(w;) = Fwix) = |ly — Xabi|[* — |ly = Xwi]| = [[i — wis |57 x

Proof. We note that all derivatives of orders higher than 2 of f(w) = ||y — Xw||? are zero, and that
V fuw,. = 0 by the optimality of w;.. We also note that the Hessian V2 f,, = X7 X at all points w.
Then by the Taylor expansion of f(w) around w;:

Fbi) = fwis) + (05 — wis) - V fu,. + (05 — win) XT X (1; — wis)
Which using V f,,,,, = 0 and rearranging terms gives the result. O

Now Corollary 7 in the Appendix of [Wang|[2018]] states (without proof) the below identity, which we

provide a proof of for completeness via Lemma 8}

Wi —Wis = (—XTX + N+ E) ' Bywie —ANXTX M+ Ey) win + (XTX + A+ E,) ' B,y
21

Wi — wix||4 <

BI(XTX AN +E)) Eywi A +3N2 (X T X AN+ Ey) w4 +H3]|(X T X HN+Ey) 7 By
(22)

Hence, still following Wang|[2018]], for any psd matrix A,

Lemma 10. Wang|[12018] With probability 1 — p, || E1|| < (Amin(XTX) + \)/2, and hence
XTX 4+ M+ E; = 5(XTX + M)

We also remark that || By||% = (By)” ABy = ||y||%+ 4 for any vector y, and matrices A, B.
Hence, Inequality with A = X7 X can be further simplified to:
X TX+A+Er) T Eywi |3 +3N|[(XT XM +Ey) ™ wis |33 (X T XM +Ey) 7 B3 <

0 (”Elwi*H%XTXJr)\IJrEl)—l + )‘2||wi*||%XTX+)\I+E1)—1 + HE2||%XTX+)\I+E1)—1) =

(Lemma[I0) O (||E1wi*”?XTX+)\I)*1 + /\2Hwi*‘|?XTX+)\I)*1 + ||E2H%XTX+>\I)*1) (23)
By basic properties of the trace we have: tr((A] +X7X) 1) < d\pae(M +XTX1) =

Wix 2 . .
Amin(klﬂ-XTX) - (AmierA)’ and ||wi*||%XTx+,\1)—1 < % Continuing from Wang| [2018]]

by their Lemma 6, we can bound each || Eywi|[Fxr -1 and [ Ea|[fxr vy py-1-
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Lemma 11 (Wang| [2018]]). Let 6 € R? and let E a symmetric Gaussian matrix where the upper
triangular region is sampled from N (0,0?) and let A be any psd matrix. Then with probability 1 — p:

1E9|[% < o*tr(A)[|0]]* log(2d*/p)
Then recalling that:
* of = O(||X||*/€?)
* a3 = O(l|X|PP[|VI[*/€)
Plugging into Lemma|[TT] and bringing it all together we get:
|F (i) = Fwi)| < |Jwis — il[xrx =
o (HElwi*H%)(TXJr)\I)fl + )‘2||wi*||%XTX+)\I)*1 + HE2||%XTX+)\I)*1> =

d
RN 1og<2d2/p>)

A4 e 4.2 2 2,4
0 (5 s P11 ) o2 ) 4 M+ 5
(24)

min + A

Upper bounding Equation 24]by taking Anin = 0, we minimize over \ setting

[|wis |2

~ (1 l 2
A=O<Evdlog<zd2/p>||X| el + 2 )

- (1
F(wi)—F(wi*)l=0<6\/d10g(2d2/p)IXII\/IIXIZIIwi*II4+l||yIQIIwi»«IIZ) (25)

Now if we are in the n—small regime, we have || V|| < n||X||||w;«||, and so
2 4
UPIPw?, < 1P| X lwis]

ik —

which reduces Equation [23]to:

P0) = F ()| = O (£ VARRCEAIIX P (VD)
as desired. O]

5.3 Proofs from Subsection [4.4]
Proof of Theorem 4.5

Proof. Our analysis will hinge on the case where [ = 1 e.g. that of standard private linear regression,
which we will extend to the PRIMO case by our choice of € as in the proof of Theorem .| The fact
that the Algorithm is (O(€), §) private follows immediately from the Gaussian mechanism, and the
secrecy of the sub-sample lemma (Lemma , which is why we can set e; = Z¢/2 in Line 2. We
proceed with the accuracy analysis.

Define:
(YT Y\-1vTy. .
o w;, = (X1 X)7IX'Y: the least squares estimator as before

s w) = (2 XTX + XI)"'LXTY: the ridge regression estimator
s wy = (1 XEXg + M) (L XTY): the sub-sampled least squares estimator

« Wy = (1XEXs + E1 + M) Y2 XTY + E»): differentially private estimate of w
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We note that 0 < f(w}) — f(wix) < A (|Jwi|[? = [[w|[*) < A[[W||?. Then by the Lemma |§|and

Cauchy-Schwartz with respect to the norm || - || x7x
|f(10s) — flwis)| = [|ws — wi*H%(Tx <
3”’&)” - z*||XTX + 3||wz* ngXTX + 3Hw9 - ﬁ}SHQXTX <
BMIWIP + 8llws = wisl ery +3[[s —willfry (26)

n

Lemmas|[T2] [T3]bound these terms with high probability.
Lemma 12. Under the assumption ||X|| = O(n\), then w.p. 1 — p/2:

XI[|1Y|] log(2d
s
Lemma 13. Under the assumption ||X|| = O(n\), then w.p. 1 — p/2:
_ Xt d102d UIX|2NY||?  dlog(2d
o= il sz — OV e L0BCID) | XD dlon2ajn),

s n2e2 A s

Then by Equation[26|and Lemmas [T2] [T3] we get that w.p. 1 — p

flws) = flwis) =

4,2
0 (s -+ 1KV o) 111

|| ||2 X g 10g(2d/p>
A s ste?

UX[PIYIP d log(2d/p)
)\(1+ s )+ n2e? .X(l—i_ s )]

(28)

Summing over ¢ and minimizing over A we set

\/HXH”yH log(2d/ﬂ))+ ||X||4n2||W||2 (1+ log(id/ﬂ)) + ZHX,U;yzyHQ ,%(1+ log(QSd/p))

VI[W]|r ’
which completes the result. O
Proof of Lemma [12}
Proof. Now:
||wz>\* - wsH%XTX = ”||wz* wsH LxTx = nHw wSHQ%XTX-&-)\I

We will focus on [[w}, LetY = LXTX + AL %, = 1 Y, gweal + A, and

2
- ws”%XTx-MI'
v=%X"Y. Expanding |[w}, — w,||x =
A

(7o -7 IRE e -2 =0T (27 - 2THE(E T -2 ) =0T A (29)

S

Now since A is Hermitian, we know [|v||4 < [|v]|||A||2. Since [[v]|| < ||X]|||V]], it suffices to
bound || A||5 with high probability. Noting that A = (1 — 2~ H%(S;1 — 81 = £718V/2(T
YR N2 (1 - 2728, 571/2)51/25 71 we have by the sub-multiplicativity of the operator
norm:

141l < (155 =218) - (117 - =722, 2)3) <

)\max(z)
2
Now consider S~1/28, 3712 = 5712150, ((wal + ADD7Y2 = 130 7, Then note
that E[Z;] = S7V2(LE[z;2]] + A)E7Y2 = £71/2887Y2 = [, and that A\peo(Z;) <
1= el s + Ml < 14 L0
Now we can bound ||I — 1 >_jes Zil|2 by Theorem 2.2 inTropp, [2010]:

(=722 27 23) - Go)
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Lemma 14. |Tropp|[2010] Let Z, . . . Zs sampled without replacement from {Z, . .. Z,}. Then if
Z; € S;,E[ZZ—] = 14, and maX;c[n] Amax(Zi) < Bw.p. 1 —p, for§ =/ %(zd/p):

Amax( ZZ ) <146, Amin(= ZS:ZZ-)>1—6

=1

So by Lemma we know that with probability 1 — p: |[Apnin(I — 2728, 271/2))

1 — Amax(27Y25,571/2) < 4, and similarly [Apax(I — 27Y25,5712)| < 4, thus || —
»-1/2%,%-1/2)||, < 4. Substituting this all into Equationand noting Apax (%) < @ + X we
get with probability 1 — p

max(z)
[l = willxrx < |1y = wslls <[ X[[VInflAll; < [|XIYI==5=6% = 3D
<"’“” u A)? log(2d/p)
2[| X[l PR €
which under the assumption || X|| = O(n\) gives O(W). as desired. O

Proof of Lemma

Proof. By Lemma with A = %XgX 4+ AM,B = FEi,c = Ey,v = %TY, we get wy, — Wy =
(IXEX + M + E)Fiw, — (1 XEX + M + Ey)"'E,, and so

1
st w8||XTX = 2”( X§X+)‘I+E1) 1E1wSHXTx +2||(5X5X+>‘I+E1) 1E2||XTX

Under the assumption || E1 ||z < A/2, this becomes

l[ws — ws” xTx = =0 (||E1w5||(%XngJr/\I)*l(XTX/n+)\I)(éX§Xs+)\I)*1) +

O<||E2‘|(%XSTXS+>\I)*1(XTX/n+AI)(%X§XS+AI)*1) (33)

Now to apply Lemma|[IT] we need to bound

1 1
Tr((ngXS + M) HXTX/n + AI)(;XEXS + AN < Dnax (5) HE)N(Bg) ) =
d}\max(zfl/Z(21/225121/2)2271/2) <
1 2
<
/\min(z—l/221/225121/2) D\

1 2
m) , (34

| &

d)\max (2—1) (

where the last inequality follows from Lemma[T4] Applying Lemma[IT|we get that with probability
1—2p:

d, 1

) sl o2 )+ 03 - S (5 P o) )

(35)

||wi)\*_w5||XTX/n =0 (0%

10 1, _ . .
From Lemma 0 = \/2(1Jr £l il &(24/0) " \which under the assumption ||X|| = O (n)) gives

(lié)g = O(1 + 8242 y2 gubstituting in the value of oy, o5 gives:

4,,2 2 2
X log(2d/p) | UXIPIVIE d ) 1oa(2d/p)

d
2
—(1
54 2 ||W|| A( + s n2€2 A s )7
as desired. ]
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