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1 Background and Problem Motivation

Aggregating individuals’ data and computing statistics over a population are key ingredients to enable

the Internet of Things [1]. Constructing traffic maps from individuals’ GPS traces [2] and performing

demand response in smart grids [3], [4] are two examples that involve such data aggregation. Using

these statistics, individuals can perform their activities more efficiently; they may choose to avoid heavily

congested routes or charge their electric vehicle during non-peak hours. However, accessing private data

for the purpose of performing data aggregation has raised serious privacy concerns. An adversary can

potentially extract information about individuals’ data from aggregate statistics, especially when side

information is available [5]. The framework of differential privacy was developed in order to mitigate

these concerns and provide strong privacy guarantees [6], [7]. Given a desired privacy level, a noisy

version of the aggregated value is publicly released to prevent an adversary from confidently extracting

information about the private data.

For a fixed privacy level, [8] provides tools to build a private mechanism that approximates the desired

aggregate quantity. Using these tools as primitives, applications of privacy-aware data aggregation have

emerged [9], [10]. In these applications, the privacy level, parametrized by the constant ε ∈ [0,∞), is

assumed to be constant; parameter ε is a designer’s choice and is set to a fixed value throughout the life

of the aggregation system. Lower values of the parameter ε correspond to stronger privacy guarantees.

Therefore, the value ε = 0 translates to total privacy and the value ε = ∞ means no privacy. Forever

fixing the privacy level ε is a severe limitation. In practice, a varying privacy level can be useful as

motivated by the following examples.

For instance, limited techniques exist for choosing a reasonable privacy budget ε. For small values of ε,

substantial amounts of noise are injected and the performance of the resulting privacy-aware mechanism
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can be dramatically degraded. Thus, one strategy for choosing a privacy level is through a privacy-

performance trade-off curve; the minimum privacy budget ε that achieves an acceptable performance is

chosen. However, the characterization of this trade-off is impossible for real-life systems. One approach

past this hurdle is booting the system with maximum privacy (ε = 0) and relaxing the privacy budget

until a desired performance is achieved. Another example of a varying privacy budget is a potential

market of private data. Aggregating agencies initially access private data under ε1 privacy guarantees,

but they later decide to “buy some more private data”, relax privacy to a budget ε2, and enjoy better

accuracy. To the best of our knowledge, there is no previous approach on gradually releasing private data

under differential privacy.

For completeness, we mention the setting of differential privacy under continuous observations which

was first studied in [11]. In that setting, the privacy level remains fixed while more data are being released.

This scenario is radically different than the one currently presented. In this work, both the private data

and the quantity of interest are held fixed and the privacy level is varying.

Compositional theorems [8] provide a trivial, yet highly unsatisfying, approach to the aforementioned

problems. Given an initial privacy budget ε1, a noisy but privacy-preserving response y1 is generated.

Later, the privacy budget is increased to a new value ε2 and a response y2 is published. An adversary has

possibly observed both values y1 and y2. Thus, compositional theorem suggests that only ε1 + ε2 privacy

guarantees hold. Conversely, if an effective privacy level of value ε2 were desired, the second response

y2 needs to be ε2 − ε1 private; thus, potentially noisier than the first response. In fact, [12] exploits

compositional theorems and obtains tight bounds on the effective privacy level.

In this work, we prove that gradually releasing private data can be efficiently performed. Gradually

relaxing the privacy level enables fine-tuning of the parameters of a privacy-aware system after it is

bootstrapped or buying private data in multiple chunks. Moreover, we prove that releasing private

data in multiple steps, instead of in a single step, does not incur any performance loss. This result is

proven for multi-dimensional, isotropic identity queries and can be applied to many existing privacy-aware

systems without additional modifications. Finally, we conjecture that gradually releasing private data is

an intrinsic property of differential privacy.

2 Main Results

The problem explored in this work is that of gradually releasing data under differential privacy. Specifi-

cally, we are interested in designing composite mechanisms (Qε1 , . . . , Qεn), where 0 ≤ ε1 ≤ . . . ≤ εn, with

the following properties:

• Each mechanism Qεi should be an εi-private mechanism that efficiently approximates a query q.

• Any prefix (Qε1 , . . . , Qεi) of the composite mechanism should satisfy εi-privacy guarantees.
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Figure 1: The distribution of each coordinate of V2 conditioned on the value of the corresponding

coordinate V1 contains an atom and possesses a piece-wise exponential density. The privacy levels are

ε1 = 1 and ε2 = 2.

The first result addresses identity queries in high-dimensional Euclidean spaces equipped with an

l1-norm adjacency relation. The version of differential privacy adapted to metric spaces [13] is used. This

version is only slightly tighter than the original differential framework and, thus, results remain valid

under the original framework. Specifically, Theorem 1 provides the probability distribution of additive

noise samples that allow gradual release of private data.

Theorem 1. Consider privacy levels ε1, ε2 with ε2 ≥ ε1 > 0. Let Qε1 and Qε2 respectively be ε1-private

and ε2-private mechanisms with respect to the metric space Rnl1 that use oblivious additive noise:

Qε1u = u+ V1 and Qε2u = u+ V2, with (V1, V2) ∼ g ∈ ∆
(
R2n

)
, (1)

where ∆ denotes the set of probability measures. Then, the probability distribution g = lnε1,ε2 is such that

both Qε1 and Qε2 have optimal mean-squared-error:

lnε1,ε2(v1, v2) =

n∏
i=1

{
ε21
2ε2

e−ε2|yi|δ(xi − yi) +
ε1(ε

2
2 − ε21)
4ε2

e−ε1|xi−yi|−ε2|yi|
}
, (2)

where v1 =
[
x1 . . . xn

]
and v2 =

[
y1 . . . yn

]
.

The probability density (2) allows sampling each coordinate independently. The first noise sample

xi is drawn from the Laplace distribution, whereas the second noise sample yi is drawn according to the

conditional distribution depicted in Figure 1. Coordinates V1 and V2 are marginally Laplace-distributed

with parameters 1
ε1

and 1
ε2

, respectively. Moreover, the mechanism that releases (u + V1, u + V2) is

ε2-private, which is crucial for performing gradual release of private data.

The second result extends Theorem 1 to the case of relaxing privacy in multiple levels. In particular,

Theorem 2 establishes that it is indeed possible to gradually release sensitive data in arbitrarily many

steps:
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Figure 2: Gradual release of identity queries is achieved with the use of the stochastic process Vε for

ε ≥ 0. The component-wise noise samples are samples of this process. For tight values of privacy,

high values of noise are returned, whereas, almost zero samples are returned for large values of ε.

The process Vε is Markov; future samples depend only on the current value of the process which eases

implementation. Furthermore, the process is lazy; the value of the process is changed only a few times.

Thus, only a small fraction of the dimensions are expected to have updated noise samples. Therefore,

the communication burden of updating the privacy budget requires limited re-communications in a

massive aggregation scheme. For a compressed illustration, the tan−1 of the noise value is drawn.

Theorem 2. Consider m privacy levels {εi}mi=1 with 0 < ε1 ≤ . . . ≤ εm and mechanisms Qεi of the form:

Qiu = u+ Vi, with (V1, . . . , Vm) ∼ g ∈ ∆ (Rm) (3)

where (Q1, . . . , Qi) is εi-private, for any i ∈ {1, . . . ,m}. Then, the probability distribution g = lε1,...,εm

has the property that each mechanism Qi achieves optimal mean-squared-error:

lε1,...,εm(v1, . . . , vm) = lε1(v1)
m−1∏
i=1

lεi,εi+1(vi, vi+1)

lεi(vi)
(4)

The probability distribution lε1,...,εm is highly structured. In fact, the distribution establishes that

gradually releasing private data can be performed in a Markov fashion. Initially, the first noise sample

V1 is drawn from the Laplace distribution. Subsequently, the distribution of each noise sample Vi is fully

specified by the targeted privacy level εi and the last noise sample Vi−1 and privacy level εi−1. The

typical form of the conditional distribution is shown in Figure 1. Therefore, there is no computational

complexity incurred by the number of steps. The owner of the sensitive data needs to store only the most

recently released noise sample and the corresponding privacy level. In fact, neither the exact number

of steps nor the future values of privacy levels are required a priori. Form another point of view, these

properties are exactly the Markov and the non-anticipating property of the stochastic process Vε, which

is plotted in Figure 2.
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