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Abstract—Cryptographic protocols are commonly de-
signed and their security proven under the assump-
tion that the protocol parties have access to perfect
(uniform) randomness. Physical randomness sources de-
ployed in practical implementations of these protocols
often fall short in meeting this assumption, but instead
provide only a steady stream of bits with certain high
entropy. Trying to ground cryptographic protocols on
such imperfect, weaker sources of randomness has thus
far mostly given rise to a multitude of impossibility re-
sults, including the impossibility to construct provably
secure encryption, commitments, secret sharing, and
zero-knowledge proofs based solely on a weak source.
More generally, indistinguishability-based properties
break down for such weak sources.
In this work, we show that the loss of security induced

by using a weak source can be meaningfully quantified if
the source is bounded, e.g., for the well-studied Santha-
Vazirani (SV) sources. The quantification relies on a
novel relaxation of indistinguishability by a quantita-
tive parameter. We call the resulting notion differential
indistinguishability in order to reflect its structural
similarity to differential privacy. More concretely, we
prove that indistinguishability with uniform random-
ness implies differential indistinguishability with weak
randomness. We show that if the amount of weak
randomness is limited (e.g., by using it only to seed a
PRG), all cryptographic primitives and protocols still
achieve differential indistinguishability.

I. Introduction
Cryptographic protocols are commonly designed and their
security proven under the assumption that the protocol
parties have access to perfect, i.e., uniform, randomness.
Actual physical randomness sources that cryptographic im-
plementations rely on however rarely meet this assumption:
instead of providing uniform randomness, they provide only
a stream of bits with a certain high amount of entropy.
Moreover, these so-called weak sources, such as the Santha-
Vazirani (SV) sources [16], are often non-extractable [16],
[7], i.e., it is computationally infeasible to extract more
than a super-logarithmic amount of (almost) uniform
randomness from them.

There have been several attempts to bridge this gap, i.e.,
to ground the security guarantees of cryptographic systems
on such weak sources. As soon as indistinguishability-
based secrecy properties are being desired, however, this
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line of research has mostly given rise to a multitude of
impossibility results [7], [6], [13], only complemented by a
few constructive results if additional assumptions are being
imposed. For instance, encryption can be realized using
weak sources, if one imposes strong assumptions on the
entropy of encrypted messages [5], or if the weak source
is restricted to the key generation algorithm and a perfect
source is available for the actual encryption algorithm [8].
The plurality of impossibility results in this area, as well as
the absence of comprehensive constructive results, indicates
that traditional indistinguishability-based secrecy notions
fall short in capturing the impact of weak randomness on
cryptography. This constitutes an unsatisfactory situation,
with several open questions looking for an answer:
• Is it possible to quantify the secrecy loss of crypto-
graphic operations and primitives, if a weak source
(such as an SV source) is being used?
• Imagine that today a cryptographic protocol (e.g., an
e-voting system) is executed and tomorrow it turns
out that the employed randomness was weak. Given
that there are strong impossibility results [7], [6],
[13] for indistinguishability, is all lost or can we still
give quantitative guarantees about the secrecy of the
system?

• Given that these quantitative guarantees will nec-
essarily be weaker than traditional cryptographic
guarantees, under which assumptions do they still
provide reasonable practical security guarantees?

A. Our Contributions
1) Relaxing Indistinguishability to Quantify the

Secrecy Loss: We derive quantitative guarantees for all
indistinguishability-based cryptographic constructions that
are used with arbitrary weak sources that are additionally
bounded in the following sense: in addition to imposing
an upper bound on the probability of each individual bit-
string (i.e., requiring a sufficiently high min-entropy), one
additionally imposes a lower bound on these probabilities.
These bounded weak sources include SV sources [16] and
resemble balanced sources [11].
To quantify the secrecy loss that weak randomness

imposes on cryptography, we define differential indistin-
guishability, a quantitative relaxation of cryptographic
indistinguishability in the spirit of differential privacy [9],
[14] and pseudodensity [15]. The necessity of a new, relaxed
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notion arises from the impossibility result of Dodis et al. [7]
who showed that whenever only weak sources of randomness
are available, traditional indistinguishability is provably
impossible for cryptographic primitives that have a secrecy
requirement, e.g., encryption, commitments, and zero-
knowledge proofs. More concretely, one cannot ensure that
the advantage in distinguishing two challenger machines
X0 and X1 is negligible for every probabilistic polynomial-
time adversary. However, it might still be the case that no
adversary has a non-negligible advantage in performing a
practical attack that breaks the security entirely, e.g., by
reaching a state in which it is certain whether it interacts
with X0 or X1. The notion of differential indistinguishability
consequently aims at quantifying the resulting loss of
secrecy without overestimating the adversary’s power to
break the scheme entirely: Two games, i.e., interactions
with two machines X0 and X1, are (ε, δ)-differentially in-
distinguishable if for all interactive distinguisher machines
A, the output probabilities for all outputs x are related by

Pr [〈A|X0〉 = x] ≤ 2ε · Pr [〈A|X1〉 = x] + δ,

where x is a possible output of A.1 Here ε ≥ 0 is a
reasonably small constant or a decreasing function such
as 1/p(·) for a polynomial p. We allow only a negligible
function for δ, which corresponds to a negligible probability
to break the security of the scheme entirely. Differential
indistinguishability thus offers quantitative parameters to
reason about the loss of secrecy incurred by the use of
imperfect randomness.

2) Guarantees for Cryptographic Primitives Using
Weak Sources: As our main contribution we show that
traditional indistinguishability (given a uniform random-
ness source) suffices to guarantee differential indistinguisha-
bility if the uniform source is replaced by an arbitrary
bounded weak source. This result immediately entails
meaningful quantitative lower security bounds in cases
where indistinguishability-based definitions are provably
impossible to achieve [7].
In particular, our methodology can be applied in hind-

sight and produces meaningful quantitative guarantees
for all cryptographic primitives and protocols, provided
that the amount of used imperfect randomness is bounded;
there is no need for new cryptographic constructions for
any of the existing primitives whose security is defined and
proven by means of indistinguishability, including simulator-
based notions. Moreover, we show that if the bounded
weak randomness is used only to seed a secure PRG,
differential indistinguishability suffers only a negligible
quantitative (additional) security loss under composition –
just as traditional indistinguishability.

3) Connection to Differential Privacy: We analyze the
relation between differential indistinguishability and the
well-studied notion of differential privacy [9], [14], especially
in terms of composition. Similar to the privacy loss in
differential privacy when the privacy of several users is

1In contrast to differential privacy and pseudodensity, we use 2
instead of e as a base for the exponential function, because the base
2 fits standard definitions of entropy better.

analyzed, differential indistinguishability suffers from a
commensurate loss of entropy, which consequently leads
to a secrecy loss in cases where several users use weak,
potentially even dependent randomness.

II. Preliminaries and Notation
We denote sampling an element r from a distribution D
by r ← D. The probability of the event F (r), where
r is sampled from the distribution D, is denoted by
Pr [F (r) | r ← D] or more compactly by Pr [F (D)]. To
keep the notation simple, we write fk for the value of a
function f(·) applied to k, where k is typically the security
parameter. We drop the explicit dependence of parameters
and security bounds (α, β, ε, γ) on k whenever it is clear
from the context. We denote by {Dk}k∈N a family of
distributions such that for each k ∈ N the distribution
Dk samples elements from {0, 1}k. In particular, {Uk}k∈N
is the family of uniform distributions, where Uk is the
uniform distribution over {0, 1}k.

Throughout the paper we consider (possibly interactive)
Turing machines X that always have implicitly access
to a random tape with an infinite sequence of uniformly
distributed random bits, even if the machines get an
additional input drawn from some random source. Unless
we mention that they run in probabilistic polynomial time
(ppt) in the length of their first input, those machines are
not bounded. The distribution on the outputs of X when
run on input x is denoted by X(x). Similarly, we write
〈X(x)|Y(y)〉 to denote the distribution on the output of the
machine X on input x in an interaction with the machine
Y on input y. We write log := log2 for the logarithm to
base 2.

4) Randomness Sources: In addition to the commonly
used min-entropy, we make use of a symmetrically defined
counterpart, coined max-entropy [11].

Definition 1. Let D be a distribution over the
set S. The min-entropy of D is Hmin(D) ··=
minx∈S(− log Pr[D = x]); the max-entropy of D is
Hmax(D) ··= maxx∈S(− log Pr[D = x]).

Definition 2. A family of distributions {Dn}n∈N, each
over the set {0, 1}n of bitstrings of length n, is a (α, β)-
bounded weak source, if every Dn satisfies the following
entropy requirements:
(i) Dn has min-entropy at least n− α, and
(ii) Dn has max-entropy at most n+ β.

III. Differential Indistinguishability
In this section we present our main results, which can
be applied to a variety of cryptographic notions. Tradi-
tional cryptography defines two machines X0 and X1 to
be indistinguishable for a certain class of distinguishers
A if no distinguisher A ∈ A in this class is able to
notice a difference between an interaction with X0 and
an interaction with X1. Formally, the concept of “noticing
a difference” is captured by requiring that any possible
view of a distinguisher is (almost) equally likely for both
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X0 and X1, i.e., the difference between the probability
that A outputs any given view in the interaction with X0
and the probability that A outputs the same view in the
interaction with X1 is negligible. We consider a variant of
indistinguishability that allows these probabilities to be
also related by a multiplicative factor 2ε > 1, similar to
mutual pseudodensity [15] and differential privacy [9], [14].

Definition 3 (Differential Indistinguishability). Two prob-
abilistic machines X0 and X1 are (ε,δ)-differentially in-
distinguishable for a distribution {D`}`∈N over {0, 1}`
for a positive polynomial ` and a class A of adversaries
(probabilistic machines) if for all A ∈ A, for all sufficiently
large k, for all possible outputs x of A, and for all b ∈ {0, 1},

Pr
[〈

A(1k)
∣∣Xb(1k, D`)

〉
= x

]
≤ 2ε Pr

[〈
A(1k)

∣∣X1−b(1k, D`)
〉

= x
]

+ δk.

This definition allows to express many of the traditional
cryptographic indistinguishability notions [10], [12]. We
discuss the impact of the multiplicative factor, that can
(and must) be interpreted carefully, in Section V. For the
traditional case of ε = 0 we speak of δ-indistinguishability.
The definition covers interactive and non-interactive no-
tions, as well as simulation-based notions. For perfect
(information-theoretic) indistinguishability, the class of
adversaries is the class A∞ of all probabilistic (possibly
unbounded) machines and we have δ = 0.2 Statistical
indistinguishability can be expressed with the same class
of adversaries for δ > 0. Cryptographic (computational)
indistinguishability can be achieved with the class Appt of
ppt machines with δ being a negligible function.

A. Main Result
Traditional indistinguishability for uniform randomness
directly implies differential indistinguishability for (α, β)-
bounded weak sources. This is captured by the following
theorem. It allows us to easily give guarantees for crypto-
graphic primitives whenever their security notions can be
expressed in terms of Definition 3.
Theorem 1. If two probabilistic machines X0 and X1 are δ-
indistinguishable for a class of probabilistic machines A and
the family of uniform sources {Un}n∈N over {0, 1}n, then X0
and X1 are also (α+β, 2α ·δ)-differentially indistinguishable
for A and any (α, β)-bounded weak source over {0, 1}n.

B. Computational Differential Indistinguishability
In the computational setting where adversaries are ppt
machines, we can achieve a stronger result: If we rely on a
pseudorandom generator (PRG), we can expand a short
seed from a randomness source to polynomially many bits of
pseudorandomness. This well-known property is especially
interesting here, as it allows us to apply Theorem 1 in
a much broader form: Virtually every classically secure
protocol is differentially secure when only a short random

2We additionally drop the formulation “for sufficiently large k” in
the case of information-theoretic security.

seed has been drawn from a bounded weak source and
then expanded via a PRG, as this puts a limit on the
entropy loss imposed by the actual bounded weak source.
We formalize this observation in the following corollary,
which is central to our work.

Corollary 1. If two probabilistic machines X0 and X1
are computationally indistinguishable for a class of ppt
machines A and uniform randomness, then X0 and X1 are
also (α+β, 2α · δ)-differentially indistinguishable for A and
for a negligible function δ, if they draw their randomness
from a PRG that is seeded with a (α, β)-bounded weak
source.

IV. Case Study: Public-Key Encryption
We apply differential indistinguishability to a common
secrecy definition, namely indistinguishability under chosen
ciphertext attacks for public-key encryption. This definition
serves as example for how to instantiate the notion and how
to apply our main results to quantify the secrecy loss under
imperfect randomness. We demonstrate the applicability of
our results by proving that public-key encryption achieves
differential indistinguishability if it is used with bounded
weak sources.

As an example, we relax indistinguishability under
adaptive chosen ciphertext attack (IND-CCA) [10] to use
differential indistinguishability instead of traditional indis-
tinguishability.
Definition 4 ((ε, δ)-DIF-IND-CCA). A pair A = (A0,A1)
of ppt oracle machines is an IND-CCA adversary if A0
outputs two messages x0, x1 of the same length together
with a state s, A1 outputs a bit, and both A0 and A1
have access to decryption oracles as defined below. A
PKE scheme E = (Gen,Enc,Dec) has (ε, δ)-differentially
indistinguishable encryptions under adaptive chosen ci-
phertext attack for a randomness source {Dn}n∈N if for
all IND-CCA adversaries and for all sufficiently large k
and bitstrings z of polynomial length in k, it holds that
Pr
[
P(0)
k,z = 1

]
< 2ε Pr

[
P(1)
k,z = 1

]
+ δ, where P

(i)
k,z is the

following probabilistic machine:
P(i)
k,z
··= (e, d)← Gen(1k); ((x0, x1), s)← ADec(d,·)

0 (1k, e, z)

c← Enc(e, xi;Dn); output ADecc(d,·)
1 (1k, s, c)

Here, Decc(d, ·) denotes a decryption oracle that answers on
all ciphertexts except for c, where it returns an error symbol
⊥. The randomness used by the encryption algorithm Enc
is drawn from Dn.
Note that (0, δ)-DIF-IND-CCA security is equivalent to

traditional δ-IND-CCA security.
1) Encryption with Imperfect Randomness: Both the

encryption algorithm and the key generation algorithm
require randomness. Dodis and Yu [8] show that even if
weak sources are used for the key generation of IND-CCA
secure encryption schemes, the security is preserved. How-
ever, this result does not apply when imperfect randomness
is used by the encryption algorithm. The next theorem,
an application of Theorem 1, quantifies the secrecy loss
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whenever the encryption algorithm has only access to an
(α, β)-bounded weak source.
Theorem 2. Let E = (Gen,Enc,Dec) be any PKE scheme
that is δ-IND-CCA secure under the assumption that Enc
consumes at most n bits of uniform randomness. Then E
is (α+ β, 2αδ)-DIF-IND-CCA secure if Enc uses an (α, β)-
bounded weak source {Dn}n∈N instead of a uniform source.

2) Discussion: Theorem 2 enables us to provide
meaningful guarantees if an IND-CCA secure encryption
scheme relies on an imperfect randomness, as long as the
randomness used to encrypt the ciphertext in question
is drawn from a bounded weak source. If an encryption
scheme is (ε,δ)-DIF-IND-CCA secure, the adversary may
learn that the probability that a ciphertext contains a
particular message m0 is 2ε times higher than the proba-
bility that it contains another message m1. However, if ε
is reasonably small, e.g., ε = 0.001 (and thus 2ε ≈ 1.001),
both m0 and m1 are a plausible content of the ciphertext.
In particular, the adversary cannot reasonably believe or
even convince a third party that m0 is the value that has
been encrypted. Moreover, the encryptor retains (a weak
form of) deniability: She could indeed have encrypted any
message.

3) Multiple Encryptions: Theorem 2 states a guarantee
only for a single encryption (namely the encryption of one
challenge message). However, it can be extended to the
encryption of a message vector. In particular, if a PRG is
used (and thus the amount of bounded weak randomness
is limited to the seed of the PRG), Corollary 1 yields
immediately an differential indistinguishability guarantee
with ε being independent of the number of encrypted
messages. If however, the encryption algorithm Enc is
run several times with (fresh) imperfect randomness, the
entropy loss of the randomness can increase linearly in
the number of messages, and consequently, ε increases
significantly.

A. Composability
Traditional indistinguishability with a negligible function
δ and ε = 0 allows for polynomially many compositions as
a polynomial factor for the advantage of an adversary that
might come from from seeing multiple samples does not
help the adversary substantially (the advantage remains
negligible). This is not true for differential indistinguisha-
bility in general, because the (non-negligible) multiplicative
factors can be accumulated as well.
For individual users we have shown that sequential

composition of one or more primitives is possible without
an (additional) loss of secrecy if a PRG is used (Corollary 1).
If, however, several users within a protocol use imperfect
randomness, the secrecy can degrade. Interestingly, we
can give a bound on the loss of secrecy that is similar
to the composition that occurs for differential privacy.
We formulate a general composition lemma that we can
instantiate to cope with several situations.

Lemma 1. Let A be a class of adversaries. If X0 and X1
are (ε, δ)-differentially indistinguishable for A, and X1 and

X2 are (ε′, δ′)-differentially indistinguishable for A, then
X0 and X2 are (ε′′, δ′′)-differentially indistinguishable for
A where ε′′ = ε+ ε′ and δ′′ = 2ε′

δ + 2εδ′.

A direct application of the lemma is the above described
scenario in which multiple users (sequentially or concur-
rently) contribute to a protocol and use bad randomness.
In this case, the machine X1 can express an intermediate
scenario that is used in a straightforward hybrid argument,
where for two users X1 is the only hybrid. Moreover, the
lemma is applicable to scenarios where an individual user
draws from a random source several times (for several
primitives or protocols) instead of using a PRG, and also to
compositions of differential indistinguishability guarantees
in information-theoretical settings, where a PRG cannot
be employed in the first place.

V. Interpretation and Analysis
In this section, we analyze and interpret the security
guarantees provided by differential indistinguishability. In
particular, we discuss the relation between differential
indistinguishability and differential privacy.

A. Impact of a Multiplicative Factor
Similar to differential privacy, differential indistinguishabil-
ity adds a multiplicative factor to the inequality used in the
traditional indistinguishability notion. We observe that a
multiplicative bound may express properties that are inex-
pressible by an additive bound. While every multiplicative
bound of the form Pr [A] ≤ 2ε Pr [B] + δ implies a purely
additive bound Pr [A] ≤ Pr [B]+δ+2ε−1 ≈ Pr [B]+δ+ε,
the converse does not hold in general. No matter which ad-
ditive bound can be shown between two probabilistic events,
there does not necessarily exist a multiplicative bound. In
particular, there are machines that are δ-indistinguishable
for some δ but not (ε, δ′)-indistinguishable for any ε such
that δ′ < δ.
For secrecy properties, traditional indistinguishability

intuitively states that no adversary can learn any informa-
tion about the secret, except with negligible probability.
The multiplicative factor generalizes indistinguishability
to additionally allow the adversary to learn information
about the secret with more than a negligible probability,
as long as the loss of secrecy is bounded; e.g., if ε is a small
constant then differential indistinguishability ensures that
the owner of the secret retains deniability by introducing
doubt for the adversary.
Besides differential privacy, a multiplicative factor has

also been used to achieve a specialized relaxation of
semantic security in the presence of efficient adversaries
that may tamper with an SV source [1, App B.4], and
additionally for a security analysis of anonymous commu-
nication protocols [2], [3].

1) Example: Let us assume that Alice participates
in an e-voting protocol based on, e.g., a commitment
scheme. If the random source that she uses to seed her
PRG turns out to be an (α, β)-bounded weak source, the
commitments are still ε-differently hiding (this can be made
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formal), where ε = α + β is a small constant. Assume
that Alice can vote for one of two popular candidates,
say, Bob and Charlie, and she chooses to vote for Bob. In
the traditional indistinguishability case, a non-negligible
additive difference in the guarantee could result from a non-
negligible probability of leaking the vote, which is highly
unsatisfactory. The multiplicative factor 2ε, however, allows
us to guarantee that both cases will still maintain non-zero
probability and no distinguisher can be sure whether Alice
voted for Bob or for Charlie. Consider a distinguisher that
only outputs, say ‘1’ if it is certain that the vote was cast
for Bob, and ‘0’ in all other cases. Such a distinguisher
is affected by the multiplicative bound as the output ‘1’
is almost equally probable in all cases. Moreover, if the
probability of outputting ‘1’ is zero when the vote was cast
for Charlie, then differential indistinguishability implies
that the probability of outputting ‘1’ is zero when the vote
was cast for Bob.

Notice that the same analysis applies if a negligible
additive value δ 6= 0 is present. In this case, there might be
a negligible chance for the adversary to be certain about
the vote, but in all other cases, deniability is preserved.

B. Relation to Differential Privacy and Sensitivity
Differential privacy [9] quantifies the privacy provided
by database query mechanisms: Intuitively, differential
privacy requires that the output of a query mechanism
should not allow to distinguish similar databases better
than with a small multiplicative factor. Both in terms of
the definition and in terms of the small, but usually non-
negligible multiplicative factor, differential privacy and
differential indistinguishability are closely related. We find
this relation to be helpful for interpreting the guarantees
and for understanding the drawbacks of differential in-
distinguishability. Differential privacy is influenced by the
sensitivity of a statistical query, i.e., the amount of influence
individual database records can have on the output of the
query. Typical differential private mechanisms sanitize their
output by adding random noise to guarantee a certain ε-
level of privacy; the amount of added noise directly depends
on the sensitivity.
Although there are neither databases nor the concept

of utility (in the same sense as differential privacy) in our
setting, the fact that a bounded weak source is differentially
indistinguishable from a uniform source is analogous to the
differential privacy of a query mechanism. From this point
of view, the missing entropy of the weak source corresponds
directly to the sensitivity in differential privacy.

This relation between sensitivity and entropy is interest-
ing for sources that can be analyzed in a block-by-block
manner, e.g., (n, γ)-SV sources. For such a source the
entropy loss and thus the “sensitivity” is directly associated
with the parameter γ and the amount of blocks that are
drawn from this source. The higher the sensitivity, i.e.,
the more randomness is drawn by honest parties, the
smaller γ must be to allow for guaranteeing ε-differential
indistinguishability for a given value of ε. Clearly, the

bias and thus the entropy loss in a (1, γ)-SV source can
be arbitrarily increased, e.g., by drawing more random
bits and taking the majority vote over them. Although
this amplification does not make a difference for uniform
randomness, it may increase the bias of the bits for
SV sources. Therefore, for SV sources, the amount of
randomness is a necessary parameter that influences the
security.
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