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1 Introduction

Reproducibility is vital to ensuring scientific conclusions are reliable, and researchers have an obligation to
ensure that their results are replicable. However, many scientific fields are suffering from a “reproducibility
crisis,” a term coined circa 2010 to refer to the failure of results from a variety of scientific disciplines
to replicate [Ioa05, OKS+15]. A 2012 Nature article by Begley and Ellis reported that the biotechnology
company Amgen was only able to replicate 6 out of 53 landmark studies in haematology and oncology [BE12].
In a 2016 Nature article, Baker published a survey of 1500 researchers, reporting that 70% of scientists had
tried and failed to replicate the findings of another researcher, and that 52% believed there is a significant
crisis in reproducibility [Bak16].

Within the subfields of machine learning and data science, there are similar concerns about the reliability
of published findings. The performance of models produced by machine learning algorithms may be affected
by the values of random seeds or hyperparameters chosen during training, and performance may be brittle
to deviations from the values disseminated in published results [HIB+17, IHGP17, LKM+18]. To begin ad-
dressing concerns about reproducibility, several prominent machine learning conferences have begun hosting
reproducibility workshops and holding reproducibility challenges, to promote best practices and encourage
researchers to share the code used to generate their results [PVLS+20].

In this work, we aim to initiate the study of reproducibility as a property of algorithms themselves,
rather than the process by which their results are collected and reported. We define the following notion of
reproducibility, which informally says that a randomized algorithm is reproducible if two distinct runs of the
algorithm on two samples drawn from the same distribution, with internal randomness fixed between both
runs, produces the same output with high probability.

Definition 1.1 (Reproducibility). Let D be an arbitrary distribution over X . Let A be a probabilistic
algorithm with sample access to D. Then A is ρ-reproducible if PrS1,S2,rA [A(S1; rA) = A(S2; rA)] ≥ 1− ρ,
where S1 and S2 are two samples drawn i.i.d. from D, and rA is the internal randomness used by A.

More generally, we can define reproducibility with respect to access to an arbitrary probabilistic oracle.

Definition 1.2 (Reproducibility). Let AO be a probabilistic algorithm with access to probabilistic oracle

O. A is ρ-reproducible if Prr1O,r2O,rA

[
AO(;r1O)(; rA) = AO(;r2O)(; rA)

]
≥ 1 − ρ, where r1

O (and r2
O) is the

randomness used by O in an entire execution of A, and rA is the internal randomness used by A.

This definition is inspired by the literature on pseudodeterministic algorithms (see “Related Work”).
Reproducibility is a strong stability property that, applied to machine learning algorithms, implies the
algorithm is in fact learning something about the underlying distribution from which its sample is drawn,
rather than overfitting to its training data.
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Our Results. We first demonstrate the usefulness of reproducibility by giving a reproducible algorithm
rHeavyHitters for identifying approximate v-heavy-hitters of a distribution, i.e. the elements in the support
of the distribution with probability mass at least v.

We compare reproducibile algorithms to statistical query algorithms, showing how to simulate statistical
queries reproducibly, and prove the following Theorem.

Theorem 1.3 (Simulating SQ algorithms reproducibly). Let A be an SQ algorithm that makes q ∈ poly(1/τ, 1/δ)
queries to an SQ oracle with tolerance τ and failure rate δ. Then there exists a reproducible SQ algorithm
A′ that makes q queries to an SQ oracle with tolerance τ/(poly(q) + 1) and error rate 1/poly(q) that is
poly(τ, δ)-reproducible.

We show that our reproducible heavy-hitter algorithm also gives a separation between reproducible and
statistical query algorithms. The algorithm rHeavyHitters has sample complexity independent of the size
of the domain X , but we show an ensemble of distributions such that any statistical query algorithm must
make a number of queries to its oracle that depends on X .

Claim 1.4 (Learning Heavy-hitters using Statistical Queries). Any statistical query algorithm for the v-
heavy-hitters problem requires Ω(log1/τ |X |) calls to the SQ oracle.

We compare reproducibility to differential privacy. Differential privacy is an important notion of algo-
rithmic stability that, informally, asks for bounds on the distance between the two distributions induced by
an algorithm, when run on datasets that differ in a single element. Crucially, it is asks for the guarantees
in the worst case over datasets. Reproducibility asks for equality between outputs of an algorithm with
high probability, for a fixed random string, and so it is natural to ask whether a reproducible algorithm can
be generically transformed into an (approximately) differentially private one. We answer this question by
showing that ρ-reproducibility implies (0, 4ρ)-differential privacy. Finally, we show that answering statistical
queries reproducibly allows for adaptive data reuse without significantly compromising the validity of the
analysis.

Related Work. Our definition of reproducibility (Definition 1.1) is inspired by the literature on pseudode-
terministic algorithms, particularly the work of Grossman and Liu [GL19] and Goldreich [Gol19]. We adapt
their notion of reproducibility from the setting of pseudodeterministic algorithms, where they are primarily
concerned with reproducing the output of an algorithm given the same input and different randomness. Our
notion is more suitable for the setting of machine learning, where we wish to reproduce the output of an
algorithm given different inputs (samples) so long as they are drawn from the same distribution, but for a
fixed random string.

Other notions of stability that are similar to reproducibility have also been studied; some have been
shown to have connections to privacy and generalization (see Bassily, Nissim, Smith, Steinke, Stemmer,
and Ullman [BNS+16]). In the context of clustering algorithms, a notion of instability defined as the
expected distance between two clusterings of two datasets has been used to design and analyze convergence
of clustering algorithms such as K-means (see [vL10] for a survey overview). Definitions of algorithmic
and distributional stability such as ε-UCO stable (ε-uniform change-one) and ε-TV (variation distance)
stable provide generalization bounds, and these distributional stability notions compose in the adaptive data
analysis model.1 The work of [TS13] utilizes a stability notion called “subsampling stability”, getting a
differentially private algorithm for computing subsampling-stable functions. Their notion defines stability as
a property of (deterministic) functions when subsampling from a dataset, while our notion of reproducibility
is a property of (randomized) algorithms.

Among these notions of stability, many are defined so that stability holds as long as outputs are close
(i.e. outputs need not be identical). We reiterate that our focus is on algorithms that return the exact same
output for different samples, not just outputs that are similar.

Open Questions. In this work, we aim to initiate the study of algorithmic reproducibility in learning.
To this end, we propose a few general directions of study we consider interesting. We believe designing

1For example, see the lecture notes in https://adaptivedataanalysis.files.wordpress.com/2017/10/

lect07-10-draft-v1.pdf
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reproducible approaches to hypothesis testing would be particularly valuable, not only to the machine learn-
ing community, but to the broader scientific community as well. If such techniques can be developed and
adopted, we believe they could inform a new standard of experimental study design. Even looking back-
wards, it would be interesting to see if reproducible approaches to data analysis could be used to “audit”
published results, in the cases where researchers have made their data public.

To understand the usefulness and limitations of reproducibility, we would naturally like to have upper
and lower bounds on sample complexity for standard problems in machine learning theory. In addition, we
hope to identify a wider array of techniques for designing reproducible algorithms, beyond the randomized
rounding technique we use throughout this work. We would also like to continue the study of the relationship
between reproducibility and other desirable properties of machine learning algorithms, such as robustness
and low generalization error. Lastly, we believe it would be interesting to study stronger and weaker variants
of our definition, and investigate separations or equivalences between them.

2 Heavy-hitters

Here we present our reproducible approximate heavy-hitters algorithm, and give claims stating its sample
complexity and reproducibility.

Definition 2.1 (Heavy-Hitter). Let D be a distribution over X . Then we say x ∈ X is a v-heavy-hitter of
D if Prx′∼D[x′ = x] ≥ v.

Let D be a distribution over X . The following algorithm reproducibly returns a set of v′-heavy-hitters
of D, where v′ is a random value in [v − ε, v + ε]. Picking v′ randomly allows the algorithm to, with high
probability, avoid a situation where the cutoff for being a heavy-hitter (i.e. v′) is close to the probability
density of any x ∈ supp(D).

Algorithm 1 rHeavyHitters(S, v, ε)

Xset ← Q1
def
= 6/(ρ(v − ε)2) examples from S // Step 1: Find candidate heavy-hitters

for all x ∈ Xset do // Step 2: Estimate probabilities

S1 ← Q2
def
=

log(12Q1/ρ)·Q2
1

(ρε)2 fresh examples from S

Estimate px
def
= Prx′∼D[x′ = x] using S1

v′ ←r [v − ε, v + ε] uniformly at random // Step 3: Remove non-v′-heavy-hitters
Remove from Xset all x for which px < v′.
return Xset

Essentially, rHeavyHitters returns exactly the list of v′-heavy-hitters so long as the following holds. In
Step 1 of Algorithm 1, all (v − ε)-heavy-hitters of D are included in Xset. In Step 2, the probabilities for
all x ∈ Xset are correctly estimated to within error ρε/(3Q1). In Step 3, the randomly sampled v′ does not
fall within an interval of width ρε/(3Q1) centered on the true probability of a (v− ε)-heavy-hitter of D. We
show that these 3 conditions will hold with probability at least 1− ρ/2, and so will hold for two executions
with probability 1− ρ.

Claim 2.2. rHeavyHittersEX(v) is ρ-reproducible, and has sample complexity |S| ∈ O
(

log(1/(ρ2ε2(v−ε)2))
ρ4ε2(v−ε4)

)
.

Proof. We say Step 1 of Algorithm 1 succeeds if all (v− ε)-heavy-hitters of D are included in Xset after Step
1. Step 2 succeeds if the probabilities for all x ∈ Xset are correctly estimated to within error ρε/(3Q1). Step
3 succeeds if the returned Xset is exactly the set of v′-heavy-hitters of D.

In Step 1, an individual (v − ε)-heavy-hitter is not included with probabilility at most (1 − v + ε)Q1 ;
union bounding over all 1/(v − ε) possible (v − ε)-heavy-hitters, Step 1 succeeds with probability at least

1− (1−v+ε)Q1

v−ε ≥ 1− ρ/6.

3



By a Chernoff bound, each px is estimated to within error ρε/(3Q1) with all but probability ρ/(6Q1) in
Step 2. Union bounding over all Q1 possible x ∈ Xset, Step 2 succeeds except with probability ρ/6.

Conditioned on the previous steps succeeding, Step 3 succeeds if the randomly chosen v′ is not within
ρε/(3Q1) of the true probability of any x ∈ Xset under distribution D. A v′ chosen randomly from the
interval [v − ε, v + ε] lands in any given subinterval of width ρε/(3Q1) with probability ρ/(6Q1), and so by
a union bound, Step 3 succeeds with probability at least 1− ρ/6.

Therefore, Algorithm 1 outputs exactly the set of v′-heavy-hitters of D with probability at least 1−ρ/2.
If we consider two executions of Algorithm 1, both using the same shared randomness for chooosing v′, output
the set of v′-heavy-hitters of D with probability at least 1− ρ, and so rHeavyHitters is ρ-reproducible.

3 Statistical Queries and Reproducibility

We show how to use randomized rounding to reproducibly simulate any SQ oracle, and therefore SQ al-
gorithm. The statistical query model introduced by [Kea98] is a restriction of the PAC-learning model
introduced by [Val84]. Rather than giving direct access to samples from distribution D, a statistical query
oracle takes queries that are functions φ : X → [0, 1], and returns the expectation of that function on D
up to some specified tolerance τ . We consider the statistical query oracle in the context of unsupervised
learning (e.g. see [Fel16]).

Definition 3.1 (Statistical Query Oracle). Let τ ∈ [0, 1] be the tolerance parameter, and function φ : X →
[0, 1]. Statistical query oracle STAT(D, τ), on query φ, outputs a value v such that |v − Ex∼Dφ(x)| ≤ τ with
probability at least 1− δ.

Algorithm 2 rSTATSTAT(D,τ))(D, 11τ)(φ) // a reproducible SQ oracle
φ: a query X × {±1} → [0, 1]

α← 20τ
αoff ←r [0, α]
Split [0, 1] in regions: R = {[0, αoff ], [αoff , αoff + α], . . . , [αoff + iα, αoff + (i+ 1)α], . . . , [αoff + kα, 1]}
v ← STAT(D, τ)(φ)
Let rv denote the region in R to which v belongs (break ties arbitrarily)
return the midpoint of region rv

Claim 3.2 (rSTAT is an SQ oracle). If STAT(D, τ) is an SQ oracle for Df with tolerance τ and failure rate
δ, then rSTAT is an SQ oracle for Df with tolerance 11τ and failure rate δ.

Proof. With probability at least 1−δ, STAT(D, τ)(φ) returns a value v within τ of E(x,y)∼D φ(x). Outputting
the midpoint of region rv can further offset this result by at most α/2 = 10τ .

Claim 3.3 (rSTAT is reproducible). rSTAT is (2δ + 1/10)-reproducible.

Proof. The probability that either call to STAT(D, τ)(φ) fails is at most 2δ. Assuming the two calls to
STAT(D, τ) succed, the values v1, v2 returned by STAT(D, τ)(φ) differ by at most 2τ . rSTAT outputs different
values for the two runs iff v1 and v2 are in different regions of R. Since these regions are chosen by a random
offset αoff , the probability that v1 and v2 land in different regions is at most 2τ/20τ = 1/10.

Corollary 3.4. The construction in Algorithm 2 converts an SQ oracle STAT(D, τ) into a reproducible SQ
oracle rSTAT with tolerance τ + α/2, failure rate δ, and reproducibility ρ ≤ 2τ/α+ 2δ.

Theorem 3.5 (Simulating SQ algorithms reproducibly). Let A be an SQ algorithm that makes q ∈ poly(1/τ, 1/δ)
queries to an SQ oracle with tolerance τ and failure rate δ. Then there exists a reproducible SQ algorithm
A′ that makes q queries to an SQ oracle with tolerance τ/(poly(q) + 1) and error rate 1/poly(q) that is
poly(τ, δ)-reproducible.
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Proof. Let n = 1/(τδ) and τ ′
def
= τ/(nq + 1). Apply the construction in Algorithm 2 to an SQ oracle

STAT(D, τ ′) with error rate δ′
def
= 1/(nq). Using α = 2τ ′/δ′ yields a reproducible SQ oracle rSTAT with

tolerance τ , error δ′, and reproducibility 3δ′. (Note: by definition, δ′ < δ.) Let A′ be the algorithm that
runs A using rSTAT. A′ reproduces if each call to rSTAT yields the same output for both executions. By a
union bound over the q calls to rSTAT, A′ is 6/n-reproducible.

Learning Heavy-hitters using Statistical Queries. Next, we show that any statistical query algorithm
for the v-heavy-hitters problem requires Ω(log |X |/ log(1/τ)) calls to the SQ oracle. Since Algorithm 1 has a
sample complexity independent of the domain size, this implies a separation between reproducible problems
and problems solvable with SQ queries.

Claim 3.6 (Learning Heavy-hitters using Statistical Queries). Let {Dx}x∈X be an ensemble of distributions
over X , where Dx is supported entirely on a single x ∈ X . Then any statistical query algorithm for the
v-heavy-hitters problem on this ensemble requires Ω(log |X |/ log(1/τ)) calls to the SQ oracle.

Proof. Consider the ensemble {Dx}x∈X on X , where distribution Dx is supported entirely on a single x ∈ X .
An adversarial SQ oracle has tolerance τ to permute the result of a statistical query φ. So, for any φ, there
must be some distribution Dx for which the following holds: at least a τ -fraction of the distributions Dx′

in the ensemble satisfy |φ(x′)− φ(x)| ≤ τ . Thus, any correct SQ algorithm can rule out at most a (1− τ)-
fraction of the distributions in the ensemble with one query. If X is finite, then an SQ algorithm needs at
least log1/τ (|X |) queries.

4 Privacy

We show that reproducibility implies approximate differential privacy.

Definition 4.1 ((ε, δ)-Differential Privacy [DMNS06]). A randomized algorithm A : Xn → Y is (ε, δ)-
differentially private if for all datasets S, S′ ∈ Xn differing in at most a single element, and for all measurable
T ⊆ Y, we have that Pr[A(S) ∈ T ] ≤ eεPr[A(S′) ∈ T ] + δ.

Intuitively, we can construct a differentially private algorithm A′ as follows. The algorithm A′ will draw
a subsample of size n from its own sample, and return the output of the reproducible algorithm A on this
subsample. Reproducibility implies the output of A cannot be too different depending on the presence or
absence of a single data point in its input subsample, and therefore the same is true of the output of A′.

Theorem 4.2 (Reproducibility ⇒ Privacy). If a randomized algorithm A : Xn → Y is ρ-reproducible, then
there exists an algorithm A′ : Xm → Y that is (0, 2ρm

m−n )-differentially private.

Proof. The algorithm A′ proceeds as follows. On input S ∈ Xm, A′ draws a subsample U ∈ Xn and outputs
h← A(U).

To show that A′ is differentially private, we first consider the behavior of A on two independently drawn
subsamples from S, and on two independently drawn subsamples from S′. Let x and x′ denote the elements
on which neighboring sets S and S′ differ, assuming without loss of generality that they are unique in their
respective multisets so that x′ ∈ S′, x′ 6∈ S and x ∈ S, x 6∈ S′. We observe that for a subsample U of size n,
we have PrU∼S [x 6∈ U ] = (1− 1/m)n ≥ 1− n/m. Then the ρ-reproducibility of A give us

1− ρ ≤ Pr
U0,U1∼S

r

[A(U0; r) = A(U1; r)]

= Pr
U0,U1∼S

r

[A(U0; r) = A(U1; r) | x 6∈ U1] ·Pr[x 6∈ U1] + Pr
U0,U1∼S

r

[A(U0; r) = A(U1; r) | x ∈ U1] ·Pr[x ∈ U1].

Because Pr[x 6∈ U1] ≥ 1− n/m, we then have
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Pr
U0,U1∼S

r

[A(U0; r) = A(U1; r) | x 6∈ U1] ≥
1− ρ−PrU0,U1∼S

r
[A(U0; r) = A(U1; r) | x ∈ U1] ·Pr[x ∈ U1]

Pr[x 6∈ U1]

≥ 1− ρ−Pr[x ∈ U1]

Pr[x 6∈ U1]

=
Pr[x 6∈ U1]− ρ

Pr[x 6∈ U1]

≥ 1− ρm

m− n
.

Analogously, for subsamples from S′ we have PrU0,U1∼S′

r
[A(U0; r) = A(U1; r) | x′ 6∈ U1] ≥ 1− ρm

m−n .

Note that each subsample U1 from S′ such that x′ 6∈ U1 has equal probability of being subsampled from
S, and so conditioning on x 6∈ U1, we can draw U1 from S in the probability above, rather than from S′,
which gives

Pr
U∼S
U ′∼S′

r

[A(U ; r) = A(U ′; r)] ≥ 1− 2ρm

m− n
.

Since we have just shown that A(U ; r) = A(U ′; r) except with probability 2ρm
m−n , it follows that

Pr
U∼S
A

[A(U) ∈ T ] ≤ Pr
U ′∼S′

A

[A(U ′) ∈ T ] +
2ρm

m− n
,

and so we can bound the privacy loss of A′ by

Pr
A′

[A′(S) ∈ T ] = Pr
U∼S
A

[A(U) ∈ T ] ≤ Pr
U ′∼S′

A

[A(U ′) ∈ T ] +
2ρm

m− n
= Pr
A′

[A′(S′) ∈ T ] +
2ρm

m− n
.

So as long as m > 2n, A′ is (0, 4ρ)-differentially private.

5 Reproducibility Implies Adaptivity

We consider adaptive data analysis as discussed in [DFH+15b] and [DFH+15a]. The proof of Claim 5.2
follows from a hybrid argument. First, we define a slightly stronger notion of reproducibility:

Definition 5.1 (Reproducibility w.r.t. Inputs). Let X be a set of strings. Let AO(x) be a probabilistic
algorithm with access to probabilistic oracle O and input string x ∈ X . A is ρ-reproducible with respect to X
if ∀x ∈ X ,Prr1O,r2O,rA

[
AO(;r1O)(x; rA) = AO(;r2O)(x; rA)

]
≥ 1− ρ, where r1

O (and r2
O) is the randomness used

by O in an entire execution of A, and rA is the internal randomness used by A.

Claim 5.2 (Reproducibility =⇒ Data Reusability). Let D be a distribution over domain X . Let M be a
mechanism that answers queries of the form q : X → {0, 1} by drawing a sample S of n i.i.d. examples
from D and returning answer a. Let A denote an algorithm making m adaptive queries, chosen from a set
of queries Q, so that the choice of qi may depend on qj , aj for all j < i. Denote by [A,M] the distribution
over transcripts {q1, a1, . . . qm, am} of queries and answers induced by A making queries of M. Let M′ be
a mechanism that behaves identically to M, except it draws a single sample S′ of n i.i.d. examples from D
and answers all queries with S′.

If M is ρ-reproducible with respect to Q, then SD∆([A,M], [A,M′]) ≤ (m− 1)ρ.

Proof. For i ∈ [m], let [A,Mi] denote the distribution on transcripts output by algorithm A’s interaction
with Mi, where Mi is the analogous mechanism that draws new samples S1, . . . , Si for the first i queries,
and reuses sample Si for the remaining m− i queries. Note that M′ =M1 and M =Mm.
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For i ∈ [m−1], consider distributions [A,Mi] and [A,Mi+1]. We will bound the statistical distance by a
coupling argument. Let S1, . . . , Si+1 denote random variables describing the samples used, and let r denote
the randomness used over the entire procedure. [A,Mi] can be described as running the entire procedure
(with randomness R) on S1, . . . , Si−1, Si+1, Si+1, . . . , Si+1, and [A,Mi+1] can be described as running the
entire procedure (with randomness R) on S1, . . . , Si−1, Si, Si+1, Si+1, . . . , Si+1.

These distributions are identical for the first i− 1 queries and answers, so the i’th query qi is identical,
conditioned on using the same randomness. Both Si and Si+1 are chosen by i.i.d. sampling from D, so
reproducibility implies that, PrSi,Si+1,r [A(qi, Si+1; r) = A(qi, Si; r)] ≥ 1−ρ. Conditioned on both transcripts
including the same (i+1)’th answer ai+1 (and continuing to couple Si+1 and r for both runs), the remaining
queries and answers qi+1, ai+1, . . . , qm, am is identical. Therefore, SD∆([A,Mi], [A,Mi+1]) ≤ ρ for all
i ∈ [m− 1]. Unraveling, SD∆([A,M], [A,M′]) ≤ (m− 1)ρ.

Remark 5.3. This connection may be helpful for showing that reproducibility cannot be achieved efficiently
in contexts where data reuse is not efficiently achievable.

Acknowledgements. The authors would like to thank Cynthia Dwork, Toni Pitassi, Rahul Santhanam,
and Ryan Williams for interesting discussions.
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