
Benchmarking Differentially Private Graph Algorithms
Huiyi Ning Sreeharsha Udayashankar Sara Qunaibi Karl Knopf Xi He

{hy3ning,s2udayas,squnaibi,kknopf,xi.he}@uwaterloo.ca
University of Waterloo

ABSTRACT
Differential privacy is the gold standard when it comes to facilitat-
ing data analysis with strong privacy guarantees. The past decade
has witnessed the design of numerous algorithms for differentially
private graph analysis. These algorithms offer different privacy
guarantees, and require different parameters and configurations for
their usage. Some of these algorithms also suffer from poor scalabil-
ity and are not equipped to handle large datasets. The combination
of these factors makes determining the optimal algorithmic choice
for a given scenario a non-trivial affair.

In this paper, we examine the trade-offs between the accuracy
and performance of various classes of differentially private graph
analysis algorithms by benchmarking them on real-world datasets.
Our evaluation demonstrates that the optimal choice of algorithm
is highly dependent on the properties of the underlying dataset as
well as the performance and privacy requirements of a given user.
This may explain why, despite a wealth of differentially private
algorithms being available for graph analysis, their usage is not
yet prevalent. We therefore urge the adoption of a standardized
benchmarking platform, to facilitate the design and implementation
of differentially private graph algorithms.

1 INTRODUCTION
With the advent of the digital era, data collection is on the rise.
Graph-like datasets are used to store valuable sensitive data such
as email communications, social networking data, financial net-
works and health networks [2, 3, 8]. These datasets are often used
for analysis of the relationships between the entities in the graph,
and various aggregate statistics have been designed to facilitate
this. For example, graph analytics have been used to improve dig-
ital contact tracing efforts [27]. There are increasing volumes of
sensitive data that get passed around from telecommunication sys-
tems to social networking systems to retailers and so on. Privacy
concerns about this data fundamentally limits its potential appli-
cations [5]. Traditional security-control methods [1] only provide
some degree of protection, and do not meet the stringent privacy
requirements needed to prevent the complex attacks facilitated by
modern technological advancements. Failure to provide the ade-
quate protection before releasing data in any form can often have
disastrous consequences [17].

Originally, privacy-preserving practices for graphs were based
on anonymization of the released graphs [10, 16, 20, 31, 38]. How-
ever, these techniques fail to offer guarantees in several ways. Two
𝑘-anonymous releases can be combined to learn the sensitive loca-
tions of an individual [15]. The decisions made by anonymization
algorithms can leak information to the attacker as well, jeopardizing
privacy [35]. Hence, there is a need for strong privacy guarantees
and tools to support the analysis of sensitive graph data.

In recent years, differential privacy (DP) has arisen as a means
to achieve these guarantees. It is able to provide strong provable

privacy guarantees when used to release aggregate statistics about
large datasets [13]. Despite a rich set of differentially private algo-
rithms [12, 19, 23, 29, 34] for graph statistics, they are rarely used
in practice due to several challenges. One of the challenges is the
difficulty that non-experts face when deciding the optimal algo-
rithm or even privacy guarantee levels. Correctly implementing
differentially private algorithms can be tedious [26, 28].

To address this, we implement and benchmark the various algo-
rithms available to handle graph queries by examining the trade-offs
between accuracy, privacy guarantees and computational perfor-
mance. With this evaluation, we demonstrate that the optimal al-
gorithmic choice is highly dependent on a wide-variety of factors,
some of which add additional layers of complexity for inexperi-
enced users attempting to use them. To help the broader community,
the algorithm implementations and evaluation results presented
in this work have been integrated into DPGraph [36], a web-based
benchmark platform.

2 BACKGROUND
Graphs considered in prior differential privacy work are mainly
undirected and have no additional labels on nodes and edges. Given
a graph𝐺 = (𝑉 , 𝐸), where𝑉 is the set of nodes and 𝐸 is a set of edges
that connect pairs of nodes in 𝑉 , prior work focuses on releasing
graph statistics, such as degree distribution [12], small subgraph
counting [33], cut [18], graphons estimation [7], and generating
synthetic graphs [32]. We summarize a subset of the key algorithms
in Table 1 and organize them by privacy category and query type.
We will first present the privacy guarantees for graphs and then
highlight existing approaches from literature.
Variants of DP for graphs The standard differential privacy for
tabular data is defined as follows.

Definition 1 (𝜖-Differential Privacy [13, 14]). A random-
ized algorithm 𝐴 satisfies 𝜖-differential privacy if for all pairs of
neighbouring databases 𝐷 and 𝐷 ′ and for any output set 𝑆 , we have
𝑃𝑟 [A(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 × 𝑃𝑟 [A(𝐷 ′) ∈ 𝑆].

The output distribution of a differentially private algorithm is
insensitive to small changes to the input database, where databases
that only differ by the small change are called neighbours. For
tabular data, the small change is defined as “differing by a row”.
In graphs, there are more options: (i) edge-DP considers pairs of
graphs 𝐺 and 𝐺 ′ differing by an edge; (ii) node-DP considers pairs
of graphs differing by a node, where two nodes are different if they
have different edges. We assume that the total number of nodes are
fixed under node-DP.

Node-DP offers a stronger privacy guarantee than Edge-DP but,
when using the same algorithm, the queries will be answered more
accurately under Edge-DP. We will illustrate the utility difference
using the Laplace mechanism [13] for a degree distribution query 𝑞
that takes in 𝐺 and outputs a |𝑉 |-dimensional vector of counts. To

DP Guarantee Queries Algorithm and Short Name

Node DD

Laplace (deg_his_lap) [19]
Node truncation (node_trunc) [23]
Max-flow (flowgraph) [33]
Edge addition (𝜃 -cumulative,
𝜃 -constrained, (𝜃 ,Ω)-histogram) [12]

Edge SubG

Laplace [13]
Smooth Sensitivity [22, 30]
Recursive [9]
Ladder [37]

Table 1: DP algorithms for releasing degree distribution (DD)
and releasing sub-graph counting (SubG).

achieve 𝜖-edge DP (or 𝜖-node DP), the Laplace mechanism simply
adds a noise vector drawn from the Laplace distributionwith amean
value of 0 and standard deviation Δ(𝑞)/𝜖 , where Δ(𝑞) is known
as the global sensitivity of the query. For edge-DP, when adding
or removing an edge, at most two nodes will change their degree
values and thus four degree counts will be affected, i.e., Δ(𝑞) = 4.
For node-DP, changing a node can affect the degree values of𝑂 (|𝑉 |)
number of nodes. Hence, a larger amount of noise will have to be
added to 𝑞(𝐺) to ensure node-DP as against edge-DP.

Similar to degree distribution, many graph queries have a high
sensitivity under node-DP. Subgraph-counting is an important class
of join queries involving self-joins i.e. multiple joins on the same
record set. Even for edge-DP, some subgraph-counting queries are
highly sensitive. Dealing with these queries has been the focus of
DP algorithm design on graphs. There are two general approaches
to address this problem.

The first approach transforms a given graph 𝐺 to a 𝜃 -bounded
graph 𝐺𝜃 , where the maximum degree is bounded by 𝜃 , so that
the global sensitivity of the query on the new graph 𝐺𝜃 is also
bounded. A smaller noise is then added to the query answer on 𝐺𝜃

to ensure DP. Several graph transformations have been proposed
in prior work including node truncation [23, 24], edge removal [6],
edge addition [12], and Lipschitz extensions [33]. The final noisy
answer has two types of errors: the bias in the approximate query
answer on 𝐺𝜃 due to graph transformation and the noise added
directly to the query answer. When 𝜃 is large, few nodes or edges
will be removed, but there will be more noise added. When 𝜃 is
small, the noise will be small but 𝐺𝜃 will be too different from 𝐺 .
The optimal degree bound 𝜃 that gives the smallest error needs to
be learned privately. Therefore, the optimal end-to-end algorithm
differs among datasets even under the same privacy guarantee.

The second approach designs algorithms based on local sensi-
tivity which is the maximum possible change for a given graph
instance instead of considering all possible instances. As local sensi-
tivity still leaks information of a graph, a smooth bound is computed
for the local sensitivity of all possible databases at a distance from
the given database [9, 21, 23, 29, 37]. The computation of a tight
smooth bound for arbitrary queries [9, 23, 29] is expensive or re-
quires specialization [37], especially for node-DP. Zhang et al. [37]
propose a class of functions called Ladder Functions to determine
the level of noise to add to query outputs. A loose upper bound
can be derived efficiently [21, 23], but may lead to large noise addi-
tion. Such trade-offs can only be examined by benchmarking the
performance of these algorithms.

Graph | 𝑽 | |𝑬 | 𝑑max c
Chesapeake 39 170 33 0.284
US airports 500 2980 145 0.6175
Facebook 4039 88234 1045 0.6055
Ca-GrQc 5242 14496 81 0.5296
P2P-Gnutella 6301 20777 95 0.0109
Cit-HepTh 27770 352807 2468 0.3120
DBLP 317080 1049866 343 0.6324

Table 2: Dataset properties, |𝑽 |, |𝑬 |, dmax, and c denotes the
number of nodes, edges, maximum degree, and clustering
coefficient of a graph.

3 METHODOLOGY
This section describes the query classes, algorithms, datasets and
methods used for evaluation.

Query Classes and Algorithms We evaluate two major query
classes in this paper, degree distribution queries and sub-graph
counting queries. We compare the algorithms in terms of accuracy
and computational performance to determine the optimal choice
for each query class.
• Degree Distribution Queries We benchmark several node-
DP algorithms for answering degree distribution queries. The
degree distribution describes the fraction of nodes with de-
gree 𝑘 in a graph. Table 1 summarizes the algorithms and their
short names. The algorithms 𝜃 -cumulative and 𝜃 -constrained
require an input Θ, which is the maximum degree bound that
the algorithms will use to select an optimal 𝜃 for transform-
ing the graph to be 𝜃 -bounded. These two algorithms differ in
how they post-process the projected graph. (𝜃 ,Ω)-histogram
requires an additional input 𝛀, a list of partition candidates. A
partition is an aggregation structure which is used to group
adjacent degree bins to reduce the added noise through aver-
aging. The algorithm selects an optimal pair of 𝜃 and Ω values
using a quality function. We use Θ = 150 in our experiment
and 𝛀 is generated using the geometric sequence where r ∈
[1.025,1.05,1.1,1.2,1.4,1.8]. We run these algorithms within the
privacy guarantee range 𝜖 ∈ [0.01, 4];

• Subgraph-Counting QueriesWe have evaluated several algo-
rithms for counting triangles, k-star and k-triangle subgraphs.
Due to space constraints, we focus on triangle and 7-star (S7)
subgraph counting queries under edge-DP in this paper. Our
evaluation results for all other graph-based differential privacy
algorithms can be found within the DPGraph repository[36]
(https://github.com/DPGraph/DPGraph). Table 1 shows the al-
gorithms which we benchmark in this paper within the privacy
guarantee range 𝜖 ∈ [0.01, 2].

Datasets We evaluate several real-world datasets, as shown in
Table 2, with varying properties and from different domains. The
datasets are unweighted graphs and range from 39 nodes with 170
edges to 317,080 nodes with 1,049,866 edges. We picked datasets of
varying sizes and properties to get a better insight into the influence
they might have on an algorithm.

https://github.com/DPGraph/DPGraph

Figure 1: Utility vs Privacy Guarantee - Degree Distribution.
Runtime performance is reported beside each algorithm. Refer to
Section 4 for details

For example the Facebook dataset has a clustering coefficient
of 0.6 which makes it very densely connected as opposed to P2P-
Gnutella which is more sparsely connected with a clustering coeffi-
cient of 0.01. Smaller datasets like the US Airports dataset [11] are
useful in studying algorithms with high computational costs such
as the recursive algorithm. Most of our datasets can be obtained
from the Stanford Large Network Dataset Collection [25].

Evaluation MethodologyWe examined the accuracy of each al-
gorithm across a range of privacy guarantee levels. We ran multiple
iterations at each privacy guarantee and repeated this for each of
the datasets used in our evaluation. For degree distribution queries,
we report the L1 difference between the noisy and true distribution.
For sub-graph counting queries, we report the mean relative error
which is the mean of the random variable |𝐴(𝑔) – 𝑓 (𝑔) |/𝑓 (𝑔) where
𝐴(𝑔) is the differentially private output and 𝑓 (𝑔) is the true answer.
We also measure the average running times across these runs and
use them to compare algorithmic computational performance.

Evaluation Setup For our experiments, we have used a server with
an Intel Xeon Silver CPU consisting of 10 cores and 20 hardware
threads. The server had 48GB of memory available for use.

4 EVALUATION
In this section, we present our findings when examining degree
distribution, triangle counting and S7 sub-graph counting queries.
In our utility evaluations, we compare all the algorithms against
a "usability threshold", which is the performance offered by an
algorithm that simply returns a value of zero regardless of privacy
guarantee. This represents an error rate of 100%, belowwhich query
results are considered to be usable in previous literature [9, 22, 37].

While evaluating the computational performance of these algo-
rithms, their running time is compared against that of an algorithm
which reports the true query answers and thus, provides no dif-
ferential privacy guarantees. We scale the performance of all the
other algorithms against this baseline.

Figures 1, 2 and 3 show our results. The accuracies are rep-
resented using the plotted lines while the numbers on the chart
represent the scaled computational performance of each algorithm.

4.1 Accuracy results
4.1.1 Degree Distribution. Figure 1 shows our evaluation results
for degree distribution queries on a subset of graphs; the rest can be
found on the DPGraph repository [36]. The Laplace mechanism [19]
performs poorly, with an error that is 1.5x worse than just reporting
0 (usability threshold) at the largest 𝜖 = 4. (𝜃,Ω)-histogram [12] on
the Airport [11] graph has errors of at least 2.94. Hence we omit
them from Figure 1. With a very small privacy guarantee, no node-
DP algorithm beats the usability threshold; the error is at least 1.3
for all graphs when 𝜖 = 0.01.

For 𝜖 ≥ 0.5, 𝜃 -cumulative [12] performs the best, reporting the
lowest error among the algorithms as shown by Figure 1. Its utility
depends on the choice of parameter Θ. The difference is clear in
Figure 1 on the Ca-GrQc [25] graph, whose maximum degree is
81. At 𝜖 = 0.1, the error drops from 1.25 to 0.45 when we change
the default Θ = 150 to 20. The result with the adjusted Θ is labeled
as Θ-cumu* in Figure 1. 𝜃 -cumulative’s performance also depends
on the graph’s properties. As |𝑉 | increases, the algorithm’s accu-
racy improves. We compare 𝜃 -cumulative’s performance on the
Facebook and DBLP graphs [25] as they possess similar clustering
coefficients. For 𝜖 = 2, the error is 0.56 and 0.025 on Facebook and
DBLP respectively (not shown in the figure due to space limita-
tions). In addition, node_trunc [23] becomes useful for larger plots.
On Cit-HepTh [25], its error is less than 0.85 for 𝜖 ≥ 1.5 as shown in
Figure 1; on the other smaller graphs, its performance does not pass
the threshold. We only run the Flowgraph [33] algorithm on the
smallest Chesapeake [4] dataset as it is computationally heavy to
solve a max-flow problem with an objective function; for example,
an iteration of Flowgraph on the 500-node Airport graph is 80000x
more expensive than that of node_trunc. Its utility performance is
also poor, reporting error of at least 1.5 for 𝜖 ∈ [0.01, 4].

(𝜃,Ω)-histogram’s utility depends on the parameter choices Θ
and Ω. On Ca-GrQc under the default setting, its performance does
not pass the threshold for 𝜖 < 1.5; we also observe an increase in
error as 𝜖 increases from 2 to 4, with a high standard deviation.
After adjusting Θ to 20 and r to [1.001,1.01,1.1,1.3,1.5] for a finer
aggregation, the error decreases to less than 0.5 for all 𝜖 ≥ 0.5. The
result with the adjusted parameters is labeled as (Θ,Ω)-hist* in
Figure 1. In comparison, we note that 𝜃 -cumulative is less sensitive
to a poor parameter choice than (𝜃,Ω)-histogram; as evidence,
using the default Θ = 150 on Ca-GrQc, its error is no greater than
0.5 for all 𝜖 ≥ 0.1.

4.1.2 Subgraph Counting. In this section, we present our evalua-
tion results for triangle and S7 counting queries. It is also important
to note that we evaluate the Smooth Sensitivity mechanism by Nis-
sim et al. [30] for triangle counting queries and use the extensions
to this mechanism by Vishesh et al. [22] for S7 queries.
Triangle Counting Queries. The mean relative errors for each
algorithm across a range of privacy guarantees have been shown in
Figure 2. The usability threshold represents an error of 100% above
which an algorithm is considered to be unusable [22, 37].

From Figure 2, it is evident that Ladder Functions [37] provide
the best accuracy across all datasets when compared to their coun-
terparts. The Laplace [13] and Smooth mechanisms [30] may or
may not be usable depending on the properties of the underlying
data. For instance, in the Facebook dataset, both the Laplace [13]

Figure 2: Utility vs Privacy Guarantee - Triangle Counting.
Note that the Y-axis is plotted in log scale. Runtime performance is
reported beside each algorithm. Refer to Section 4 for details.

and Smooth [30] mechanisms maintain a relative error far below
the usability threshold at all privacy guarantees. However, when
using the P2P-Gnutella [25] dataset, the Laplace [13] mechanism is
unusable at all privacy levels while the Smooth [30] mechanism is
only usable under relatively relaxed privacy guarantees.

The Recursive mechanism [9] has only been run on the smaller
US Airports [11] dataset due to its performance complexity. The
Recursive mechanism is outperformed by its counterparts on this
dataset. This surprisingly includes the naive Laplace [13] mech-
anism (Figure 2). However, the small nature of the dataset may
explain these results, as even the Smooth [30] mechanism performs
significantly better when we move to larger datasets.
S7 Counting Queries. Figure 3 demonstrates that the Smooth
Sensitivity mechanism [22] outperforms Ladder Functions [37] at
most privacy guarantee levels when running S7 counting queries
across a wide variety of datasets. Unlike in triangle counting queries,
the Laplace mechanism [13] reports larger errors than the usability
threshold for S7 queries regardless of the amount of relaxation
afforded by the privacy guarantee levels.

4.2 Performance Results
Algorithm running time is largely independent of privacy guarantee
level. Hence, we report the performance at a single fixed privacy
guarantee across all algorithms. All the algorithms’ performances
have been scaled against a baseline function which returns the true
answer and hence does not provide any privacy guarantees. The
performance of each algorithm is shown in Figures 1, 2 and 3 beside
each algorithm.

4.2.1 Degree Distribution. We present the computational perfor-
mance of the degree distribution algorithms including node_trunc,
𝜃 -cumulative, 𝜃 -constrained and (𝜃,Ω)-histogram. Among the al-
gorithms that beat our utility threshold, node_trunc is the most
efficient algorithm. It is a reasonable candidate for larger graphs
under relatively relaxed privacy guarantees. In our experiment,
𝜃 -cumulative and 𝜃 -constrained rank second in run-time. Their
runtime depends on the input Θ, as they need to compute the qual-
ity function for each of the 𝜃 candidates. Lastly, (𝜃,Ω)-histogram is
most computationally heavy among the 4 useful algorithms in our
experiment. Its performance depends on the input parameters 𝛀

Figure 3: Utility vs PrivacyGuarantee - S7 Counting.Note that
the Y-axis is plotted in log scale. Runtime performance is reported
beside each algorithm. Refer to Section 4 for details.

and Θ; as a result, it is slower than 𝜃 -cumulative and 𝜃 -constrained
because it must choose the optimal pair of 𝜃 and Ω values.

4.2.2 Triangle counting queries. For triangle counting queries, we
see that all the algorithms (except the Laplace Mechanism) have a
50-70% performance overhead when compared to a baseline with-
out differential privacy. This adds another layer of complexity when
determining the optimal algorithm for a given dataset. For example,
while Ladder Functions [37] possess the best accuracy, a perfor-
mance conscious analyst may opt to use the Laplace [13]mechanism
if their data has properties similar to the Facebook [25] dataset. The
reasonable error rates, coupled with the low performance over-
heads, make this algorithm an attractive option in such cases.

4.2.3 S7 queries. When running S7 counting queries, Figure 3
shows that the Laplace [13] mechanism still continues to maintain
a performance similar to the baseline without differential privacy.
However, there is a large performance difference between Ladder
Functions [37] and Smooth Sensitivity [22]. When coupled with
the accuracy, we observe that Smooth Sensitivity is the optimal al-
gorithm when it comes to handling S7 sub-graph counting queries.

5 CONCLUSION
In this work, we show that the choice of an optimal algorithm
is dependent on the query class, privacy guarantee, algorithmic
performance and properties of the underlying graph. This partially
explains the lack of differentially private algorithms in real-world
deployments despite a wealth of available choices.

Thus, there is a need for a standardized platform such as DP-
Graph [36] to enable users to compare the utility, time complexity
and privacy guarantee trade-offs of the various available algorithms,
interactively run standardized implementations on a variety of
datasets, and make informed choices tailored to their requirements.
This work is a step towards that goal and we hope that it encourages
the prevalent deployment of these algorithms.

REFERENCES
[1] N. R. Adam and J. C. Worthmann. Security-control methods for statistical

databases: A comparative study. ACM Comput. Surv., page 515–556, Dec. 1989.
[2] J. G. Anderson. Evaluation in health informatics: social network analysis. Com-

puters in biology and medicine, 32(3):179—193, May 2002.
[3] M. Baglioni, S. Pieroni, F. Geraci, F. Mariani, S. Molinaro, M. Pellegrini, and

E. Lastres. A new framework for distilling higher quality information from health
data via social network analysis. In 2013 IEEE 13th International Conference on
Data Mining Workshops, pages 48–55, 2013.

[4] D. Baird and R. E. Ulanowicz. The seasonal dynamics of the chesapeake bay
ecosystem. Ecological monographs, 59(4):329–364, 1989.

[5] M. Barbaro and T. Z. Jr. A face is exposed for aol searcher no. 4417749. The New
York Times, 2006.

[6] J. Blocki, A. Blum, A. Datta, and O. Sheffet. Differentially private data analysis of
social networks via restricted sensitivity. In ITCS, 2013.

[7] C. Borgs, J. T. Chayes, A. D. Smith, and I. Zadik. Revealing network structure,
confidentially: Improved rates for node-private graphon estimation. In FOCS,
2018.

[8] P. J. Carrington, J. Scott, and S. Wasserman. Models and Methods in Social Network
Analysis. Structural Analysis in the Social Sciences. Cambridge University Press,
2005.

[9] S. Chen and S. Zhou. Recursive mechanism: Towards node differential privacy
and unrestricted joins. In SIGMOD, 2013.

[10] J. Cheng, A. W.-c. Fu, and J. Liu. K-isomorphism: Privacy preserving network
publication against structural attacks. In SIGMOD, 2010.

[11] V. Colizza, R. Pastor-Satorras, and A. Vespignani. Reaction–diffusion processes
and metapopulation models in heterogeneous networks. Nature Physics, 3(4):276–
282, 2007.

[12] W.-Y. Day, N. Li, and M. Lyu. Publishing graph degree distribution with node
differential privacy. In SIGMOD, 2016.

[13] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity
in private data analysis. In TCC, 2006.

[14] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 2014.

[15] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith. Composition attacks and
auxiliary information in data privacy. In KDD, 2008.

[16] J. Gao, B. Song, Z. Chen, W. Ke, W. Ding, and X. Hu. Counter deanonymization
query: H-index based k-anonymization privacy protection for social networks.
In SIGIR, 2017.

[17] S. Garfinkel, J. M. Abowd, and C. Martindale. Understanding database recon-
struction attacks on public data: These attacks on statistical databases are no
longer a theoretical danger. Queue, page 28–53, Oct. 2018.

[18] A. Gupta, A. Roth, and J. Ullman. Iterative constructions and private data release.
TCC, 2012.

[19] M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate estimation of the degree
distribution of private networks. In ICDM, 2009.

[20] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting structural
re-identification in anonymized social networks. VLDB, 2008.

[21] N. Johnson, J. P. Near, and D. Song. Towards practical differential privacy for sql
queries. VLDB, 2018.

[22] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev. Private analysis of
graph structure. PVLDB, 4:1146–1157, 08 2011.

[23] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith. Analyzing
graphs with node differential privacy. In TCC, 2013.

[24] I. Kotsogiannis, Y. Tao, X. He, M. Fanaeepour, A. Machanavajjhala, M. Hay, and
G. Miklau. Privatesql: a differentially private sql query engine. VLDB, 2019.

[25] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collec-
tion. http://snap.stanford.edu/data, June 2014.

[26] M. Lyu, D. Su, andN. Li. Understanding the sparse vector technique for differential
privacy. PVLDB, 2017.

[27] Z. Mao, H. Yao, Q. Zou, W. Zhang, and Y. Dong. Digital contact tracing based
on a graph database algorithm for emergency management during the covid-19
epidemic: Case study. JMIR mHealth and uHealth, 9(1):e26836, 2021.

[28] I. Mironov. On significance of the least significant bits for differential privacy. In
CCS, 2012.

[29] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in
private data analysis. In STOC, 2007.

[30] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in
private data analysis. page 75–84, 2007.

[31] K. P. Puttaswamy, A. Sala, and B. Y. Zhao. Starclique: Guaranteeing user privacy
in social networks against intersection attacks. In CoNEXT, 2009.

[32] Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren. Generating synthetic
decentralized social graphs with local differential privacy. In CCS, 2017.

[33] S. Raskhodnikova and A. Smith. Lipschitz extensions for node-private graph
statistics and the generalized exponential mechanism. In FOCS, 2016.

[34] V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship privacy: output pertur-
bation for queries with joins. In PODS, 2009.

[35] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality attack in privacy
preserving data publishing. In VLDB, 2007.

[36] S. Xia, B. Chang, K. Knopf, Y. He, Y. Tao, and X. He. DPGraph: A Benchmark
Platform for Differentially Private Graph Analysis. In Proceedings of the 2021
International Conference on Management of Data, pages 2808–2812, 2021.

[37] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. Private release
of graph statistics using ladder functions. In SIGMOD, 2015.

[38] E. Zheleva and L. Getoor. Preserving the privacy of sensitive relationships in
graph data. In PinKDD, 2008.

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	4 Evaluation
	4.1 Accuracy results
	4.2 Performance Results

	5 Conclusion
	References

