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1 Introduction

Distributed mean estimation (DME) is a fundamental and important task as it serves as a sub-routine
in convex optimization, aggregate statistics, and, more generally, federated learning. In many applications,
clients are contributing input vectors that contain sensitive information. Thus, we should perform DME
in a privacy-preserving manner. A surge of recent work has produced cryptographic protocols for secure
aggregation, with varying privacy and security guarantees.[10, 4, 3, 2, 16].

Secure multiparty computation (MPC) is a viable tool for DME as it enables distributed computation
of arbitrary tasks while simultaneously guaranteeing privacy where nothing beyond the output of the
computation is revealed and correctness where the output is correct according to the specified function.
Furthermore, MPC provides these guarantees even in the presence of an adversary that can control a
subset of the parties and launch a coordinated attack on the protocol. While MPC shows how to compute in
a distributed environment with the best possible security, there are two issues MPC fails to address: (1) it
does not prevent adversaries from setting the inputs of corrupted parties arbitrarily thereby affecting the
accuracy of the computation and (2) it does not specify what to compute and in many cases the underlying
function (eg, sum of the inputs) itself can leak information of parties’ inputs.

Towards mitigating the first issue, the Prio system by Corrigan-Gibbs and Boneh [10] designed a
robust secure aggregation protocol. Prio is widely used by Apple, Google, Internet Services Research
Group (ISRG), and Mozilla. For example, Mozilla uses a modified version of Prio to collect web usage
statistics privately. In the Prio architecture, a set of clients holding private inputs delegate the task of
aggregation to a set of servers. The Prio protocol preserves the privacy of an honest client’s input even
in the presence of a semi-honest (passive) adversary that corrupts an arbitrary subset of the servers. A
key feature in their work is the robustness guarantee that protects the system from “faulty” inputs. More
precisely, given some polynomial-time computable predicate P their system is able to weed out bad inputs,
i.e. those that do not satisfy the predicate P via a “input certification” mechanism. Another attractive
feature of their work is that the clients only need to send a single (i.e. non-interactive) message to all the
servers. Such a feature allows the clients to participate over weak networks. The main drawback of Prio
is that it only tolerates the semi-honest corruption of the servers and incurs large communication costs
between the clients and servers1.

A follow-up work by Talwar [16] improves the efficiency of Prio under the same threat model and
architecture by making two relaxations. First, the robustness guarantee is relaxed to approximate
robustness where invalid inputs could be accepted with a small (yet, non-negligible) probability. Second,
the security guarantee allows differentially-private leakage of the honest clients’ inputs in addition to the
output of the computation.2

*Work done while a postdoctoral fellow at Georgetown University. Visiting researcher at Google employed via Magnit.
1The communication between every client and each server is proportional to the “circuit” size of the predicate P .
2In contrast, standard MPC security guarantees nothing beyond the output of the computation is revealed.
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Another line of work, initiated by Bonawitz et al. [4] considers secure aggregation in the so-called
star topology where the central (output) party is connected with all the clients and learns the result of
the secure aggregation. The main feature of their construction is that the protocol execution goes to
completion even when a subset (up to a threshold) of nodes drop out or behave maliciously. This is
referred to as guaranteed output delivery in the MPC literature. A series of works [2, 6, 9] have refined
this approach to additionally achieve robustness. One drawback that persists in this line of work is that
they achieve security only against semi-honest corruption of the center node. [2] shows how to achieve
security against malicious corruption of the center node but this comes with the cost of degrading the
guaranteed output feature to security with abort.

Finally, all prior works only address the first of the two issues in MPC-based protocols discussed
above and do not prevent leakage from the underlying function. Addressing this requires imposing a
stronger guarantee of differentially privacy [11]. While prior works suggest using differentially private
mechanisms, none of the works concretely design or analyze with this guarantee. In particular, no prior
work shows how to combine robustness with differential privacy.

Our Results. In this work, we address the two aforementioned issues by first constructing a robust
secure aggregation protocol. Then, we design a differentially private mechanism for DME that uses the
robust secure aggregation protocol developed in the first step as a black box.

Our secure aggregation protocol is robust with respect to predicate P (·), obtains privacy of honest
clients’ inputs in the presence of a malicious adversary and also achieves guaranteed output delivery.
Further, our protocol only utilizes lightweight cryptography based on symmetric-key (i.e., collision-
resistant hash functions) and is black-box in the underlying cryptographic primitives.

Theorem 1.1. Let h > 0 and P : F d → {0,1} be an arbitrary predicate. The protocol ΣP involves nc clients, ns
servers, and an output party O and securely computes the summation

∑
Xi · P (Xi) where Xi ∈ F d is the input

vector of the ith client. This protocol tolerates a malicious rushing adversary that can actively corrupt an arbitrary
number of clients, up to t servers, the output party and drops out at most ds servers when ns > 3t + ds +1. Further,
ΣP achieves guaranteed output delivery.

Moreover, the total communication complexity and between a client and each server is Õ(d +
√
ns · d + |P |+ ns ·

h/ |F |) field elements, and among the servers is Õ(nc · ns2 · d) field elements3 where d >> ns and h is the output
length of the hash function.

In our DP DME protocol, clients execute a pre-processing algorithm PRE before communicating with
ΣP . Its output is differentially private due to the accumulation of noise introduced by PRE and resists
malicious input due to the choice of P .

Theorem 1.2 (Upper bound for DP DME). Let (ε,δ) be target privacy parameters. Assume client data
Xi (i ∈ [nc]) belongs to the Euclidean unit ball Bd . There is a predicate P and pre-processing algorithm PRE such
that, when all nc clients evaluate PRE and communicate the results to ΣP , the composition is (ε,δ)-differentially
private. Moreover, the output party can post-process the aggregated value to obtain an unbiased estimate of the mean
1
nc

∑
Xi . Its variance is O( d

ε2nc2
log 1

δ ). If t =O(nc) clients are malicious, then we achieve (O(ε),O(δ))-differential

privacy4 and the squared bias is Õ( t2

nc2
· d
ε2nc

).

In the fully honest case (t = 0), the above variance bound is asymptotically the same as the classic
Gaussian mechanism. In the malicious case (t > 0), it is conceivable that smaller squared bias is achievable
with other protocols that “wrap” alternative PRE,POST around ΣP . We show this goal comes with a
price for a natural class of PRE,POST algorithms.

3Õ(·) ignores polylogarithmic factors in ns,nc,F .
4It is possible to re-parameterize the protocol to guarantee a target ε for, say, 2/3 corruptions instead of 0 corruptions. However,

this comes at the price of increased error since each PRE must introduce slightly more noise for privacy.
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Theorem 1.3 (A Lower bound for Wrapped DP DME). For any pair of pre- and post-processing algorithms
that preserves (ε,δ = o(1/nc))-differential privacy where additionally the post-processing algorithm is affine, the
resulting system either produces biased estimates when there are no malicious clients or there is an explicit attack
by t malicious clients that results in t2

nc2
· d
ε2nc

expected squared error.

Remark 1.4 (Benefits of Modularity). Our upper and lower bounds for DP are agnostic to the implementation of
secure aggregation. We could wrap our PRE and POST algorithms around any other MPC protocol that performs
input-certified secure aggregation—for example, one with improved communication efficiency—and obtain the
same error guarantee as in Theorem 1.2. By the same token, replacing our secure aggregation protocol will not
circumvent the constraint stated in Theorem 1.3

2 Our Robust Secure Aggregation Protocol

We are interested in scenarios wherein large corporations, such as Apple, Google, or Meta, deploy
powerful servers to securely compute on their users’ data.Typically, secure aggregation systems involve
a single center node (or server) that efficiently manages a large number of clients by undertaking
a bulk of the workload. Nonetheless, many existing systems encounter the following obstacles: (i)
Malicious adversaries: Effectively managing malicious adversaries poses a significant challenge, as they
can arbitrarily deviate from the protocol. In particular, a malicious client could deliberately provide
malformed inputs to manipulate the output. Additionally, a malicious center node or server represents a
single point of failure and cannot be entirely relied upon to handle sensitive data from a large number of
clients. (ii) Unreliable clients (i.e., client dropouts): The clients primarily consist of mobile devices, which are
inherently deemed unreliable due to their limited capabilities. As a result, it is unrealistic to expect them
to engage in multiple rounds of interaction with the servers or handle computationally intensive tasks.
(iii) Handling a large number of clients (Scalability): The servers are tasked with managing a significant
number of clients, potentially numbering in the thousands. Therefore, it is crucial for the server-side costs
to scale well in terms of both communication and computation. Specifically, any of the fixes to handle
malicious adversaries or dropouts should incur minimal costs per client. For instance, certifying the
well-formedness of the inputs involves checking if the input X satisfies some predicate P (·) i.e., P (X) = 1.
Prior works achieve this by requiring server communication proportional to the size of the predicate5 per
client, which do not scale well for large predicates.

We now provide a high-level overview of our protocol and discuss how we address each of the
aforementioned obstacles. As a starting point, we consider a simple protocol based on a semi-honest
variant of BGW using the packed secret sharing scheme [12]. The clients share their inputs among the
servers who then perform the computation. Note that our protocol leverages the multi-server setting
with an honest majority to achieve guaranteed output delivery6.

To achieve robustness, we enhance this simple protocol with an input certification mechanism using
zero-knowledge (ZK) proofs, similar to [10], RoFL [6], and EiFFEL [9]. Specifically, each client generates
succinct ZK proofs to prove to each server that the inputs are well-formed (i.e., satisfy a predicate P ) and
that the input share given to the server is consistent with this well-formed input. The client transmits her
input share and (additionally) the associated ZK proof to each server. Our main technical contribution
lies in the design of a lightweight protocol for input certification where the communication complexity
from the client to the server is proportional to

√
|P |. Also, the communication overhead incurred by the

servers after receiving the inputs shares and proofs (from the clients) is independent of the size of the
certification predicate |P |. This resolves the first and the third obstacles mentioned above.

5The size of the predicate P (·) is defined as the number of gates in the circuit representing P .
6Our guarantees differ from prior works [5, 3, 6, 2, 9] in the single server setting because their security guarantees do not hold

when the server is maliciously corrupt.
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To address the second obstacle, we incorporate the following three techniques. First, each client needs
to just speak only once i.e., interact with the servers over just one round of communication. Second, clients
employ a simple sharing scheme (rather than communication-intensive verifiable secret sharing (VSS)) to
share clients’ inputs which minimize the clients’ communication costs. Third, the clients use lightweight
and succinct zero-knowledge proofs to certify well-formedness of their inputs, thereby incurring lower
computation costs.

Overall, our robust secure aggregation protocol is concretely efficient and achieves guaranteed output
delivery and robustness, and privacy against malicious adversaries.

3 Achieving Differential Privacy

Upper Bound. We now sketch how to perform DP DME by building around ΣP , a protocol that only
adds input that accepted by predicate P . Assume for now that ΣP accepts infinite-precision inputs. Clients
can add independent Gaussian noise N(0, (σ2/nc) · I) to their data vectors, where I is the identity matrix.
If all nc clients are honest, the aggregated vector has noise distributed as N(0,σ2I). It is well-established
that this ensures a target parameter ε of differential privacy when σ2 ≈ 1/ε2. If t > 0 clients are malicious,
the aggregate has less variance than intended. As a result, the effective privacy parameter will not be the
same as the target parameter ε but it will follow a smooth function of t, roughly ε ·

√
nc/(nc − t).

In reality, we will only be able to operate with finite-precision values. So instead of sampling from
N(0,σ2/nc) for each coordinate, each client samples from Bin(h/nc,1/2). Clients simply need to discretize
their data in order to match the discrete nature of binomial noise.

Cheu, Joseph, Mao, and Peng show that binomial noise suffices for DP DME [8]. But, due to
composition, their error bound has polylogarithmic factors not present in the Gaussian mechanism’s
bound. We instead quantify how well the binomial approximates the distribution formed by rounding a
Gaussian to the nearest integer. The De Moivre-Laplace theorem is a classic asymptotic result: as h→∞,
Bin(h,1/2)− h/2 approaches round(N(0,σ2 = h/4)). We derive a variant that allows us to choose h for a
target level of approximation: if h ≈ 1

ε2
log 1

δ , then the binomial is (ε,δ)-close to the rounded Gaussian,
where “(ε,δ)-close” is the condition that appears in approximate differential privacy. The upshot is that
greater fidelity of approximation requires a greater magnitude of binomial noise. Clients re-scale their
data to match that scale of noise, preventing their signal from being drowned out.

The output party obtains an estimate of the mean by undoing the scaling that the clients performed.
When there are no malicious clients, there is no bias because the noise introduced is spherical around
0. The presence of t malicious clients naturally introduces bias but this is bounded by way of input
certification: P rejects vectors whose Euclidean norms exceed a threshold computed from a tail bound on
the idealized spherical Gaussian.

Comparison with Prior work. DP DME protocols built atop secure aggregation already exist in the
literature [13, 1, 7]. The primary distinction of our work is bounding error when input certification is
available. In the full version of our work, we also construct a predicate P for the protocol by Chen, Özgür,
and Kairouz and repeat the analysis steps [7]. The prior protocols have Rényi and concentrated DP
guarantees but we argue our protocol remains competitive with respect to composition: we use Gaussian
DP to budget across multiple rounds and only resort to approximate DP to quantify simulation fidelity.

Lower Bound. We finally give intuition for our lower bound (Theorem 1.3). Any DP solution for mean
estimation in the ℓ2 ball must have expected squared ℓ2 error ≈ d/ε2nc [14, 15]. If the estimate is unbiased,
this is a lower bound on the variance. Now, for a wrapped protocol Π = (PRE, P ,POST) where POST is
affine, this implies a lower bound on the variance of PRE(Xi) for any datum Xi . So an “extreme” value
must lie inside the support of PRE. This is what a malicious client can send to skew the result.
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