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Abstract

In vertical federated learning, we are given a data-set about users that is distributed across several servers. Each
server owns a specific disjoint subset of attributes of all users. The goal is to perform data analysis tasks over the
entire distributed data-set containing all attributes of every user. We study private algorithms for basic learning
problems including pattern counting, moment estimation, k-clustering, low-rank matrix approximation and linear
regression in vertical federated learning where the messages communicated between servers are differentially
private. Our moment estimation and k-clustering algorithms are built on a novel pattern counting algorithm,
where the goal of pattern counting is to count the number of users with a certain pattern of attributes. Our pattern
counting algorithm is a generalization of the randomized response technique and we show that its approximation
is near optimal. In addition, our algorithms for pattern counting and its applications also satisfy local differential
privacy, which may be of independent interest.

For low-rank matrix approximation and linear regression, we adopt sketching-and-perturbation technique and
show differentially private approximate algorithms for both problems in the vertical federated learning setting.

1 Introduction

Federated Learning (FL) consists of building machine learning models from datasets that are distributed across
different entities while limiting the total amount of data samples exchanged amongst the entities. This allows us to
build models using large sources of possibly sensitive data owned by different actors while limiting the risks regarding
data privacy, data security, or data access rights [40]. Two major paradigms of Federated Learning have emerged:
Horizontal Federated Learning (HFL) and Vertical Federated Learning (VFL) [66]. In HFL, different servers contain
information about different set of users and the objective is to perform basic data mining or machine learning tasks
over the set of all users across the servers. In VFL, all servers contain information about the same set of users but
each server has a different set of attributes for each individual user. The horizontal/vertical terminology arose by
treating the joint dataset as an m× d matrix where m is the number of users and d is the number of attributes.

VFL has become increasingly important as entities in different domains, that all serve the same set of users,
have come to collaborate so they can train better models and understand their users better owing to the availability
of increased number of attributes corresponding to each user. In this context, preserving privacy is of essential
importance to assure the users that their sensitive data is not shared with other entities that has some other
attributes of the same user. In some cases, sharing private data of users with other entities is regulated by privacy
laws such as GDPR [22] and HIPAA [57]. More recently, the Digital Markets Act (DMA) [21] will put restrictions on
data-sharing even between different entities within the same company. Hence, studying privacy-preserving algorithms
for VFL is of essential industrial importance. Over the last few years, differential privacy has become the de facto
standard for privacy requirements in machine learning and data mining applications. In this context, we aim to
design algorithms in the VFL model that are differentially private (DP) [16, 18]. At a high level, DP guarantees that
any single user’s data cannot significantly affect the output of the algorithm. Roughly, we say that an algorithm
in the VFL setting is DP if the overall historical messages (transcript) sent by each server over the entire course
of the algorithm is DP with respect to the data it has. We formalize this definition of differential privacy in the
VFL setting in §1.1. A similar definition has been used by [39] in the context of two servers. Recently, DP VFL
algorithms were also studied by [64, 48].

Concretely, the VFL setting is modeled as follows: There are v data silos (servers) and the j-th server has an
m × d(j) matrix A(j) (or an m dimensional vector x(j) if d(j) = 1). Here m denotes the number of users and d(j)

denotes the number of attributes that the j-th server has about the users. We define d :=
∑

j d
(j) to be the total

number of attributes. We also assume that there is a central coordinator (CC) that aggregates the messages sent by
different servers and computes the final solution with respect to the overall dataset [A(1) A(2) · · · A(v)] ∈ Rm×d. In
this work, we consider the scenario where the number of servers, v, is small. This is a reasonable setting in practice
when the attributes of interest are distributed over a small number of data silos/servers.
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In this work, we show two general schemes for DP VFL algorithms. We call the first scheme pattern-counting
scheme. At a high level, we propose a generalization of the randomized response [61] technique to estimate the
number of users with a certain pattern of attributes across servers. To the best of our knowledge, this is the first DP
VFL algorithm for the pattern counting problem. In addition, we prove that its approximation is near optimal (see
§F). Our another technical contribution is to show a series of extensions including norm estimation and clustering
problems under DP VFL setting by reducing these problems to our pattern counting primitive. Interestingly, our
pattern counting primitive and its applications also satisfy local differential privacy, which may be of independent
interest. The second scheme for DP VFL algorithms is a simple sketching-and-perturbation technique which was
originally developed for DP numerical linear algebraic algorithms [27] in the non-FL setting. We show how to apply
these techniques to obtain DP algorithms in the VFL setting for low-rank matrix approximation (a.k.a. Principal
Component Analysis) and linear regression problems.

We include informal versions of our results and a high level technical overview in this extended abstract. We
refer readers to the appendix for more details.

1.1 Definitions

Let D be the family of datasets. We define a symmetric relation ∼ on D and say that for X,X ′ ∈ D, if X ∼ X ′,
then X and X ′ are neighbors. In this paper, we consider the following definition of neighboring datasets: if datasets
X and X ′ differ on at most one data entry, and the difference between the two data entries is at most some given
bound, then we say X and X ′ are neighbors.

Definition 1.1 (ε-DP and (ε, δ)-DP). A randomized mechanism M : D → O is (ε, δ)-differentially private ((ε, δ)-DP)
if ∀S ⊆ O and ∀X,X ′ ∈ D with X ∼ X ′, Pr[M(X) ∈ S] ≤ eε Pr[M(X ′) ∈ S] + δ. If δ = 0, we say the mechanism
M is ε-DP.

Definition 1.2 (DP in VFL). Consider a distributed randomized algorithmA over v servers and letMA(X
(1), X(2), · · · , X(v))

denote the transcript, i.e., the historical messages sent by all servers, when the j-th server holds the datasetX(j) ∈ D(j)

for each j ∈ [v]. Let T be the set of all possible transcripts. If ∀S ⊆ T and ∀j ∈ [v],∀X(j), X ′(j) ∈ D(j) with

X(j) ∼ X ′(j), Pr[MA(X
(1), X(2), · · · , X(v)) ∈ S] ≤ eε Pr[MA(X

(1), X(2), · · ·X ′(j) · · · , X(v)) ∈ S] + δ, then we say
A is (ε, δ)-DP in VFL. If δ = 0, we say A is ε-DP in VFL.

The above definition extends the two-party differential privacy studied by [39]. Suppose a distributed algorithm is
non-interactive, i.e., the messages sent by a server does not depend on the messages sent by other servers. Using the
compositionality of differential privacy, if the messages sent by the j-th server is DP with respect to the dataset held
by the j-th server, then the algorithm is DP in VFL. Notably, all our algorithms are non-interactive in this work.

1.2 Our Results

We give a brief overview of our DP VFL algorithms including pattern counting, moment estimation, clustering, low
rank approximation and linear regression. In all results below, we present v as a constant for simplicity.

Pattern counting. For pattern counting, each server j ∈ [v] holds a vector x(j) ∈ {0, · · · ,M}m. We say

x′
(j) ∈ {0, · · · ,M}m is a neighboring dataset of x(j) if there is at most one user i ∈ [m] such that x′

(j)
[i] ̸=

x(j)[i]. The goal is to develop a DP algorithm to count the number of occurrences of each possible row pattern
ρ = (ρ(1), · · · , ρ(v)) ∈ {0, 1, · · · ,M}v. More precisely, the number of occurrences of the pattern ρ is defined as
countρ := |{user i ∈ [m] |

∧
j∈[v] x

(j)[i] = ρ(j)}|.

Theorem 1.3 (Simplified version of Theorem B.1 and Theorem B.2). There is an ε-DP VFL pattern count-
ing algorithm which outputs countρ for every possible pattern ρ such that with probability at least 0.99, ∀ρ ∈
{0, 1, · · · ,M}v, countρ ∈ countρ ±

√
m · (1/ε)v ·Ov(logM).

Using the lower bounds of [39], we can show that the
√
m dependence in additive error is necessary even for v = 2.

Obtaining lower bounds on the additive error in terms of the number of servers v is an important open question.

ℓp Moment estimation. In the ℓp moment estimation problem in VFL, each server j holds a non-negative integer
vector x(j) and the goal is to estimate the ℓp moment ∥x(1) + · · ·+ x(v)∥pp where p ≥ 1 is some constant. We consider

event-level DP for this problem, i.e., a neighboring dataset x′
(j)

of x(j) can differ from x(j) by at most one entry and

in addition ∥x′(j) − x(j)∥∞ ≤ 1. Event-level DP non-federated learning ℓp moment estimation algorithms have been
studied by e.g., [59, 20]. The following theorem states our result for DP VFL ℓp moment estimation.
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Theorem 1.4 (Simplified version of Theorem C.2). For any α ∈ (0, 0.5), there is an ε-DP ℓp moment estimation

algorithm in the VFL model which achieves (1± α)p-multiplicative error and
√
m · ((logm)/εα)

Ov,p(1)-additive error
with probability at least 0.99.

Similar to our pattern counting algorithm, our algorithm for ℓp moment estimation also satisfies both DP in
vertical federated learning and local DP simultaneously. For the special case when p = 2, we present a simpler
sketching-and-perturbation based algorithm with better approximation guarantee.

Theorem 1.5 (Simplified version of Theorem E.5). For any α ∈ (0, 0.5), there is an (ε, δ)-DP ℓ2 moment estimation

algorithm in the VFL model which achieves (1± α)-multiplicative error and Ov

(
log(m) log(1/δ)

αε2

)
-additive error with

probability at least 0.99.

Euclidean k-means clustering. Given m points A ∈ Rm×d (each point is indicated by a row A[i]) in d-
dimensional Euclidean space, k-means clustering aims to find a set of k centers C ∈ Rk×d such that the clustering
cost

∑
i∈[m] minl∈[k] ∥A[i]−C[l]∥22 is minimized. In the literature of differentially private k-clustering, it is a common

assumption that an upper bound ∆ is known such that every data point A[i] is in a ball with radius ∆ [13, 25, 52]. In
the vertical federated learning model, input A is vertically partitioned into A = [A(1) A(2) · · · A(v)]. Any neighboring

dataset A′(j) of A(j) satisfies that there is at most one row i ∈ [m] such that A′(j)[i] ̸= A(j)[i], and A′(j)[i] is still in
the ball with radius ∆. The goal is to develop a differentially private algorithm in the vertical federated learning
model to compute a set of k centers to minimize the k-means clustering cost with respect to A.

Theorem 1.6 (Simplified version of Corollary D.4). There is an ε-DP k-means clustering algorithm in the VFL

model which achieves multiplicative error O(1) and additive error O
((

(k/ε)d logO(1)(m) +
√
m · (k/ε)Ov(1)

)
∆2
)

with probability at least 0.99.

Our algorithm uses DP k-means algorithm in the non-federated learning as a subroutine. If we instead use local
DP k-means algorithm, our algorithm can easily satisfy both DP in vertical federated learning and local DP at the
same time. Note that (k/ε)Ω(1)∆2 additive error is necessary for a DP algorithm even in the non-federated learning
setting [26]. In addition Ω(

√
m∆2) additive error is necessary in the local DP setting [51].

Low rank approximation and linear regression. By applying the sketching-and-perturbation technique similar
to the ℓ2 moment estimation algorithm mentioned previously, we also present DP algorithms for low rank matrix
approximation and least squares linear regression in the vertical federated learning model. These algorithms are
obtained by simulating non-federated learning DP algorithms of [27]. For these two problems in the vertical federated
learning model, the input matrix A ∈ Rm×d is partitioned into A = [A(1) A(2) · · · A(v)] where A(j) is held by the
j-th server. For the linear regression problem, there is an additional server which holds the label vector b ∈ Rm.

We consider the same definition of neighboring dataset as [27]. The neighboring dataset A′(j) of A(j) satisfies that

there is at most one row i ∈ [m] such that A′(j)[i] ̸= A(j)[i] and in addition ∥A′(j)[i]−A(j)[i]∥2 ≤ 1. Similarly, the
neighboring dataset b′ of b satisfies that there is at most one entry i ∈ [m] such that b′[i] ̸= b[i] and in addition
∥b′ − b∥∞ ≤ 1. The goal of rank-k matrix approximation is to find a matrix V ∈ Rd×k such that ∥A − AV V ⊤∥F
is minimized. The goal of least squares linear regression is to find a coefficient vector x such that ∥Ax − b∥2 is
minimized. Due to space constraints, we move the discussion about these results to Appendix E.

Theorem 1.7 (Simplified version of Theorem E.1). For any α ∈ (0, 0.5), there is an (ε, δ)-DP rank-k ap-
proximation algorithm in the vertical federated learning model which achieves (1 + α)-multiplicative error and
O(ε−1

√
(k/α2 + logm) log(1/δ)d)-additive error.

Theorem 1.8 (Simplified version of Theorem E.4). For any α ∈ (0, 0.5), there is an (ε, δ)-DP least squares
linear regression algorithm in the vertical federated learning model which achieves (1 + α)-multiplicative error and
O((d/α2 + logm) log(1/δ)ε−2(∥x∗∥22 + 1))-additive error, where x∗ is the optimal solution.

Though linear regression is also studied by [64] with a similar algorithm, they make assumptions on data
distribution and analyze the distance between the output coefficient vector and the ground truth solution, while we
consider the worst case approximation of the objective function.

1.3 Our Techniques

In this section, we briefly discuss the high level ideas of our algorithms. We first present our core idea for the pattern
counting algorithm, and then discuss how to reduce moment estimation and clustering to the pattern counting
problem.
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Pattern counting. To illustrate the intuition, we consider a simple case when there are only two servers and each
server holds a binary vector x(1) and x(2) respectively. The goal is to count the number of users i ∈ [m] such that
x(1)[i] = x(2)[i] = 1. An intuitive way is to send private versions of x(1) and x(2) to the central coordinator and the
central coordinator estimates the number of appearances of the pattern based on the private vectors. A standard
way to privately encode a binary vector is randomized response [61]: Given a binary vector u ∈ Rm, we flip each
entry of u with probability 1/2 − ε, and the obtained vector q is Θ(ε)-DP [18].

Given randomized responses y(1) and y(2) of x(1) and x(2) respectively, we propose the following decoding method:
For j ∈ {1, 2}, and i ∈ [m], let z(j)[i] = (y(j)[i]− (1/2− ε))/(2ε). It is easy to see that E[z(j)[i]] = x(j)[i] and thus
E[z(1)[i]z(2)[i]] = E[z(1)[i]]E[z(2)[i]] = x(1)[i]x(2)[i] by the independence. Therefore

∑
i∈[m] z

(1)[i]z(2)[i] is an unbiased

estimator of the number of users whose entries in x(1) and x(2) are both 1. In addition, we have |z(j)[i]| ≤ O(1/ε)
with probability 1 and therefore using a Hoeffding bound, we obtain that

∑
i∈[m] z

(1)[i]z(2)[i] is a good estimate
with high probability.

The above procedure can be easily extended to the case where there are v > 2 servers. Each server j holds a binary
vector x(j), and the goal is to estimate the number of users whose entries in x(1), x(2), · · · , x(v) are all 1. Similar to
the approach described above, we can firstly compute randomized responses y(1), y(2), · · · , y(v) for x(1), x(2), · · · , x(v)
respectively, and then derive z(1), z(2), · · · , z(v) from y(1), y(2), · · · , y(v) respectively. We can obtain a good estimation
using

∑
i∈[m]

∏
j∈[v] z

(j)[i]. Finally, we show how to reduce the non-binary pattern counting problem to the binary

pattern counting problem: Consider a pattern ρ ∈ {0, 1, · · · ,M}v. For each server j, we create a binary vector x̂(j)

where x̂(j)[i] = 1 if and only if x(j)[i] = ρ(j). Then the number of occurrences of ρ in x(1), · · · , x(v) is the same as the
number of users whose entries in x̂(1), · · · , x̂(v) are all 1. Since randomized responses are local DP [18], the above
procedure satisfies local DP and DP in vertical federated learning at the same time.

ℓp Moment estimation. We briefly describe how to use pattern counting to develop an algorithm for ℓp moment
estimation. We assume that each server j has a vector x(j) with non-negative integer coordinates. For each server j,
we apply Laplace mechanism to compute y(j) = x(j) +L(j) where L(j) is the vector of Laplace noise. Thus y(j) is
differentially private. Let x =

∑
j∈[v] x

(j) and y =
∑

i∈[m] y
(j). For large enough entry y[i] ≥ M/2, y[i]p is a good

approximation to x[i]p, where M is a threshold parameter ∼ log(m). Thus, we are able to estimate the contribution
of large entries to the ℓp moment up to a multiplicative error. For a small entry y[i] < M/2, we know x[i] ≤ M
and thus (x(1)[i], x(2)[i], · · · , x(v)[i]) ∈ {0, 1, · · · ,M}v. By applying the pattern counting algorithm, we are able to
estimate the number of rows i ∈ [m] satisfying y[i] < M/2 and x[i] = 0, 1, · · · ,M respectively. Therefore, we can
estimate the contribution of small entries to the ℓp moment as well. Since both y(j) and our pattern counting are
also local DP, our ℓp moment estimation algorithm satisfies both local DP and DP in vertical federated learning
simultaneously as well.

k-Means clustering. A common framework to obtain a DP, approximate k-means solution includes two steps.
The first step is to compute a good DP bicriteria solution, i.e., a set of > k centers with a good k-means cost.
The second step is to map each point to the closest center in the bicriteria solution. Then for each center in the
bicriteria solution, we assign it a weight that is a DP approximation of number of points mapped to it. Then
running a non-private weighted k-means algorithm on the centers in the bicriteria solution together with the weights
provides a DP approximate k-means solution. For the first step, we first run (local) DP k-means algorithm to find
an approximate k-means solution Ĉ(j) for A(j) for each server j ∈ [v]. Then we show that the set of centers

Ĉ =
{[
Ĉ(1)[i1] Ĉ

(2)[i2] · · · Ĉ(v)[iv]
]

| (i1, i2, · · · , iv) ∈ [k]v
}

obtained by all possible concatenations of local centers is a good bicriteria k-means solution for the entire dataset A,
and each center in Ĉ can be indexed by a pattern ρ ∈ [k]v based on its concatenation. For each server j ∈ [v], we
create a vector x(j) as follows: x(j)[i] = l ∈ [k] if Ĉ(j)[l] is the closest center to A(j)[i] among Ĉ(j). Then the center
in Ĉ indexed by (x(1)[i], x(2)[i], · · · , x(v)[i]) is the closest center to A[i]. Therefore the number of appearances of the
pattern ρ in (x(1), x(2), · · · , x(v)) indicates the number of points in A mapped to the center indexed by ρ in Ĉ. Thus
the second step can be done by our pattern counting algorithm.
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[47] Richard Nock, Raphaël Canyasse, Roksana Boreli, and Frank Nielsen. k-variates++: more pluses in the
k-means++. In International Conference on Machine Learning, pages 145–154. PMLR, 2016. 19

[48] Thilina Ranbaduge and Ming Ding. Differentially private vertical federated learning. arXiv preprint
arXiv:2211.06782, 2022. 1, 19

[49] Or Sheffet. Differentially private ordinary least squares. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pages 3105–3114. PMLR, 2017. 19

[50] Adam D. Smith, Shuang Song, and Abhradeep Thakurta. The Flajolet-Martin sketch itself preserves differential
privacy: Private counting with minimal space. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. 19

[51] Uri Stemmer. Locally private k-means clustering. The Journal of Machine Learning Research, 22(1):7964–7993,
2021. 3, 19, 20

[52] Uri Stemmer and Haim Kaplan. Differentially private k-means with constant multiplicative error. Advances in
Neural Information Processing Systems, 31, 2018. 3, 13, 19

[53] Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, and Hongxia Jin. Differentially private k-means clustering.
In Proceedings of the sixth ACM conference on data and application security and privacy, pages 26–37, 2016. 19

[54] Zhihua Tian, Rui Zhang, Xiaoyang Hou, Jian Liu, and Kui Ren. Federboost: Private federated learning for
gbdt. arXiv preprint arXiv:2011.02796, 2020. 19

[55] Jalaj Upadhyay. The price of privacy for low-rank factorization. Advances in Neural Information Processing
Systems, 31, 2018. 19

7



[56] Jalaj Upadhyay and Sarvagya Upadhyay. A framework for private matrix analysis. arXiv preprint
arXiv:2009.02668, 2020. 19

[57] U.S. Department of Health & Human Services. Health Insurance Portability and Accountability Act. https:
//www.hhs.gov/hipaa/, 1996. 1

[58] Chang Wang, Jian Liang, Mingkai Huang, Bing Bai, Kun Bai, and Hao Li. Hybrid differentially private federated
learning on vertically partitioned data. arXiv preprint arXiv:2009.02763, 2020. 19

[59] Lun Wang, Iosif Pinelis, and Dawn Song. Differentially private fractional frequency moments estimation with
polylogarithmic space. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022, 2022. 2, 19

[60] Yining Wang, Yu-Xiang Wang, and Aarti Singh. Differentially private subspace clustering. Advances in Neural
Information Processing Systems, 28, 2015. 19

[61] Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer bias. Journal of
the American Statistical Association, 60(309):63–69, 1965. 2, 4, 9

[62] Kang Wei, Jun Li, Chuan Ma, Ming Ding, Sha Wei, Fan Wu, Guihai Chen, and Thilina Ranbaduge. Vertical
federated learning: Challenges, methodologies and experiments. arXiv preprint arXiv:2202.04309, 2022. 19

[63] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends® in Theoretical
Computer Science, 10(1–2):1–157, 2014. 18

[64] Ruihan Wu, Xin Yang, Yuanshun Yao, Jiankai Sun, Tianyi Liu, Q. Kilian Weinberger, and Chong Wang.
Differentially private multi-party data release for linear regression. In Proceedings of the Thirty-Eighth Conference
on Uncertainty in Artificial Intelligence, volume 180 of Proceedings of Machine Learning Research. PMLR, 2022.
1, 3, 19

[65] Kai Yang, Tao Fan, Tianjian Chen, Yuanming Shi, and Qiang Yang. A quasi-newton method based vertical
federated learning framework for logistic regression. arXiv preprint arXiv:1912.00513, 2019. 19

[66] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and applications.
ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19, 2019. 1, 19

[67] Jianzhe Zhao, Jiayi Wang, Zhaocheng Li, Weiting Yuan, and Stan Matwin. Vertically federated learning with
correlated differential privacy. Electronics, 11(23):3958, 2022. 19

8

https://www.hhs.gov/hipaa/
https://www.hhs.gov/hipaa/


A Preliminaries

For an integer M , we define [M ] := { 1, 2, · · · ,M }. For a vector a ∈ Rd and an index i ∈ [d], we use a[i] to denote
the i-th coordinate of the vector a. If there is no ambiguity, we sometimes abuse the notation and also use ai to
denote a[i]. For x, y ∈ R, we use x± y to indicate the interval [x−|y|, x+ |y|]. Let A be an m×d matrix. We use A[i]
to denote the i-th row of A. We sometimes abuse the notation and use A to denote a point set {A[1], A[2], · · · , A[m]}
as well. We use ∥A∥F := (

∑
i

∑
j A

2
ij)

1/2 to denote the Frobenius norm and ∥A∥2 := maxx ∥Ax∥2/∥x∥2 to denote the
operator norm of A. For k ≤ min(m, d), we use Ak to denote the best rank k approximation of A in Frobenius norm
i.e., ∥A−Ak∥F = minrank-kB ∥A−B∥F. By Eckart-Young-Mirsky’s theorem, Ak can be obtained by truncating the
Singular Value Decomposition (SVD) of A to the top k singular values. We use σmax(A) and σmin(A) to denote the
maximum and minimum singular values of A respectively. Given a parameter t > 0, the Laplace distribution Lap(t)
parameterized by t, has the p.d.f f(x | t) = (1/2t) · exp(−|x|/t). The above distribution has mean 0 and variance 2t2.

We first state a basic composition result for differential private mechanisms that we use throughout.

Theorem A.1 (Basic composition [18]). Suppose M = (M1, · · · ,Mk) is a sequence of differentially private
mechanisms over the domain D potentially chosen sequentially and adaptively. If the mechanism Mi is (εi, δi)-
differentially private for i = 1, · · · , k respectively, then M is (

∑
i εi,

∑
i δi)-differentially private.

We will now state techniques to convert any algorithm into a differential private mechanism by adding appropriate
noise to the response. Let f : D → { 0, 1 } be a binary function and the set of databases D be Dm. For X ∈ D,
define f(X) to be the m-dimensional vector obtained by applying f to each element of X. For X,X ′ ∈ D, define
X ∼ X ′ if they differ in exactly one position. Given ε < 1/4 and X ∈ D, let priv(f(X), ε) be an m-dimensional
random binary vector defined as

Pr[(priv(f(X), ε))i = 1] =

{
1/2 + ε if f(X)i = 1
1/2 − ε if f(X)i = 0

.

Additionally, the coordinates of priv(f(X), ε) are mutually independent. Now a procedure M that first computes
f(X) and then samples a random binary vector from the distribution defined by priv(f(X), ε) is O(ε)-differentially
private. This mechanism is called randomized response and is one of the basic ways to obtain differentially private
mechanisms in a black-box way. Randomized response can be used to reveal a binary vector in a differentially private
way while still being able to use some useful statistics about the original binary vector from the revealed binary
vector.

Theorem A.2 ([18, 61]). For ε < 1/4, randomized response is 8ε-differentially private.

Remark A.3. The randomized response mechanism can be modified to accommodate all the values of ε ≥ 0. We
use this formulation for convenience in our proofs.

We now discuss mechanisms that can be used to make more general functions private in a black-box way. Let
f : D → Rm be an arbitrary function. Define sensitivity ∆∥·∥f := maxX,X′∈D, X∼X′ ∥f(X)− f(X ′)∥. Here ∥ · ∥ is
any arbitrary norm on Rm. For convenience, we use ∆1f for the ℓ1 sensitivity ∆∥·∥1

f and ∆2f for the ℓ2 sensitivity
∆∥·∥2

f .

Definition A.4 (Laplace and Gaussian mechanism). Consider an arbitrary function f : D → Rm. The Laplace
mechanism is defined as ML(X, f, ε) = f(X)+ (Y1, · · · , Yk). Here each random variable Yi is sampled independently
from Lap(∆1f/ε). The Gaussian mechanism is defined as MG(X, f, (ε, δ)) = f(X) + (G1, · · · , Gk) where Gi is
independently sampled from N(0, σ2) with σ2 = 2 log(1.25/δ)(∆2f)

2/ε2.

Theorem A.5 ([18]). For any f, ε, δ, the Laplace Mechanism ML(·, f, ε) is ε differentially private and the Gaussian
Mechanism MG(·, f, (ε, δ)) is (ε, δ) differentially private.

B Pattern Counting

In this section, we state the guarantees of our novel differentially private algorithms for the pattern counting problem
in the vertical federated learning model.
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Algorithm 1: Pattern Counting via Randomized Responses

Input: An x(j) ∈ Rm for each server j, an upper bound M ∈ Z≥1 and a privacy parameter ε
Output: {countρ | ρ ∈ ([M ] ∪ 0)v}

1 for each server j = 1, · · · , v concurrently do
2 for k = 0, · · · ,M do

3 For all i ∈ [m], set a
(j)
k [i]← 1[x(j)[i] = k]

4 b
(j)
k ← priv(a

(j)
k , ε′) for ε′ ← ε/16 // Randomized response (see § A).

5 Send (b
(j)
0 , · · · , b(j)M ) to the Central Coordinator

6 At the Central Coordinator:
7 Collect the binary vectors sent by the servers
8 for ρ ∈ ([M ] ∪ { 0 })v do

9 For all i ∈ [m], set Xρ[i]←
∏

j∈[m] (b
(j)

ρ(j)
[i]− 1/2 + ε′)/(2ε′)

10 countρ ← max(0,
∑

i∈[m] Xρ[i])

11 return {countρ | ρ ∈ ([M ] ∪ { 0 })v}

Theorem B.1 (Pattern counting). Given a vector x(j) ∈ Rm for each server j = 1, · · · , v, a privacy parameter
ε ∈ (0, 0.5), a probability parameter γ ∈ (0, 0.5) and an upper bound M ∈ Z≥0, Algorithm 1 is ε-DP in the vertical
federated learning model and computes an estimate countρ for each ρ ∈ {0, 1, · · · ,M}v. With probability ≥ 1− γ,
for all ρ ∈ {0, 1, · · · ,M}v, countρ ∈ countρ ± Cv

√
m · ln(Mv/γ)/εv where Cv is a factor which only depends on v.

The total size of messages sent by each server is O(M ·m).

Proof. Firstly, let us consider privacy. For each server j, we define binary vectors a
(j)
k for k = 0, · · · ,M as follows:

a
(j)
k [i] =

{
1 x(j)[i] = k

0 otherwise
.

We now note that for each server j, for neighboring vectors x(j) and (x(j))′ that differ in at most one coordinate,

the group of vectors (a
(j)
0 , . . . , a

(j)
M ) and ((a

(j)
0 )′, . . . , (a

(j)
M )′) defined using the above definition for x(j) and (x(j))′

differ in at most two coordinates. Let ε′ = ε/16. It is clear that ε′ ≤ 1/4. Thus considering the group of vectors

(a
(j)
0 , . . . , a

(j)
M ) to be a binary vector with m · (M + 1) coordinates and using the fact that the vectors differ in at

most 2 coordinates if they are created from neighboring datasets, we obtain that releasing b
(j)
k = priv(a

(j)
k , ε′) for

each k is (16ε′)-differentially private and therefore is ε-DP.

Next, let us consider the communication cost. Since each server j releases (b
(j)
0 , · · · , b(j)M ), where each vector is

m-dimensional, the total size of the messages is at most O(m ·M).

Finally, let us consider the approximation guarantee. We note that the coordinates of the vector b
(j)
k are

independent by definition of priv(·, ε′). For each i ∈ [m],

E[b
(j)
k [i]] = (1/2− ε′) + (2ε′)1[x(j)[i] = k].

which by linearity implies that E

[
(b

(j)
k [i]−1/2+ε′)

2ε′

]
= 1[x(j)[i] = k]. Let ρ ∈ {0, 1, · · · ,M}v be an arbitrary pattern.

We now have

E

∏
j∈[v]

b
(j)

ρ(j) [i]− 1/2 + ε′

2ε′

 =
∏
j∈[v]

1[x(j)[i] = ρ(j)]

where we used the fact that the random variables b
(1)

ρ(1) [i], · · · , b
(v)

ρ(v) [i] are mutually independent. We now define the

random variable

Xρ[i] :=
∏
j∈[v]

b
(j)

ρ(j) [i]− 1/2 + ε′

2ε′
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and note that |Xρ[i]| ≤
(

1
2ε′

)v
with probability 1 since |b(j)

ρ(j) − 1/2 + ε′| ≤ 1/2 + ε′ with probability 1. By linearity

of expectation, E[
∑

i∈[m] Xρ[i]] = countρ. Using the upper bound on |Xρ[i]| and the fact that the random variables

Xρ[1], · · · ,Xρ[m] are mutually independent, we obtain

Pr[|
∑
i∈[m]

Xρ[i]− countρ| ≥ t] ≤ 2 exp

(
− 2t2

4m/(2ε′)2v

)
.

Picking t = O(
√
m ln(1/q)/(2ε′)v), we obtain that with probability≥ 1−q,

∑
i∈[m] Xρ[i] ∈ countρ±O(

√
m ln(1/q)/(2ε′)v).

Setting q = γ/(M + 1)v, by a union bound, with probability ≥ 1− γ, for all patterns ρ ∈ ([M ] ∪ { 0 })v,∑
i∈[m]

Xρ[i] ∈ countρ ±O

(√
m ln(Mv/γ)

(2ε′)v

)
.

By plugging ε′ = ε/16 into above formula, we complete the proof.

We use sampling to reduce the communication of Algorithm 1 and get the following theorem.

Theorem B.2 (Low communication pattern counting). Given a vector x(j) ∈ Rm for each server j = 1, · · · , v, a
privacy parameter ε ∈ (0, 0.5), a probability parameter γ ∈ (0, 0.5), an upper bound M ∈ Z≥0, and a communication-
approximation trade-off parameter p ∈ (Ω(log(1/γ)/m), 1], there is an ε-DP algorithm in the vertical federated
learning model and computes an estimate countρ for each ρ ∈ {0, 1, · · · ,M}v. With probability at least 1− γ, for all

ρ ∈ {0, 1, · · · ,M}v, countρ ∈ countρ ± Cv

√
m/p · ln(Mv/γ)/εv where Cv is a factor which only depends on v. In

addition, the total size of messages sent by each server is at most O(M · pm).

Proof. In Algorithm 1, each server j sends the vectors m dimensional binary vectors b
(j)
0 , · · · , b(j)M and we argued

that with probability 1 − γ, for each pattern ρ, the m dimensional random vector Xρ[i] satisfies
∑m

i=1 Xρ[i] =
countρ ±

√
m · ln(1/γ)/εv. Crucially, we note that the value of Xρ[i] depends only on the i-th coordinates of the

vectors b
(j)
k for j = 1, · · · , v and k = 0, · · · ,M . Let S ⊆ [m] be a random subset of coordinates sampled such

that each i ∈ [m] is in i ∈ S independently with probability p. With high probability, we have |S| = O(pm) and
(1/p)ES [

∑
i∈S Xρ[i]] =

∑
i∈[m] Xρ[i]. Hence, sampling a few coordinates and sending the corresponding values of

the vectors b
(j)
k is sufficient to estimate

∑
i∈[m] Xρ[i] and hence countρ. We use the fact that |Xρ[i]| ≤ (8/ε)v to

obtain tail bounds on |
∑

i∈S(1/p)Xρ[i]−
∑

i∈[m] Xρ[i]|.
By using Bernstein’s inequality,

Pr

∣∣∣∣∣∣(1/p)
∑
i∈S

Xρ[i]−
∑
i∈[m]

Xρ[i]

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

(
− −t2/2
mT 2/p+ Tt/3p

)

where T = (8/ε)v. For t = O(T
√
(m/p) log(1/γ′)) with γ′ and p satisfying log(1/γ′)/p ≤ m, we havePr[|(1/p)

∑
i∈S Xρ[i]−∑

i∈[m] Xρ[i]| ≥ O(T
√
m/p log(1/γ′))] ≤ γ′. By picking γ′ = γ/((M + 1)v), we can union bound over the at most

(M + 1)v values of ρ and obtain that with a probability 1 − 2γ, for each ρ ∈ ([M ] ∪ { 0 })v, (1/p)
∑

i∈S Xρ[i] ∈
countρ ± Cv (1/ε)

O(v)
ln(1/γ)(

√
m/p +

√
m). Furthermore, if pm = Ω(log(1/γ)), with probability at least 1 − γ,

|S| ≤ O(pm) and thus the total size of messages sent by a server is at most O(pm ·M).

C ℓp Moment Estimation

In this section, we consider ℓp moment estimation problem in vertical federated learning. Each server j ∈ [v],
has a nonnegative vector x(j) with integer coordinates and we want to estimate ∥

∑v
j=1 x

(j)∥pp. When p = 1,

since x(1), x(2), · · · , x(v) are non-negative, ∥
∑

j x
(j)∥1 =

∑
j ∥x(j)∥1. Server j computes ∥x(j)∥1 and then sends

∥x(j)∥1 + Lap(1/ε) to the central coordinator. This mechanism is ε-DP as the function ∥ · ∥1 has an ℓ1 sensitivity of
1. Thus ∥

∑
j x

(j)∥1 can be estimated up to an additive error of O(
√
v/ε) with probability at least 0.99 by an ε-DP

algorithm in the vertical federated learning model. For p = 2, we present a simple sketching and perturb technique
to solve the ℓ2 moment estimation problem in Appendix E. However, the technique does not generalize to the case
when p ̸= 2. In this section, we show how to get a good ℓp moment estimation for general p.

For general p, we look towards an algorithm based on input perturbation. A simple differentially private algorithm
that uses the Laplace mechanism is as follows: server j adds a Laplace noise vector L(j) ∈ Rm with each coordinate
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Algorithm 2: ℓp Moment Estimation

Input: x(j) ∈ Zm
≥0 for each server j ∈ [v], privacy parameter ε ∈ (0, 0.5), approximation parameter α ∈ (0, 0.5), and

p > 0
Output: Ĉ ⊂ Rd

1 for each server j = 1, · · · , v concurrently do

2 Compute y(j) = x(j) +L(j) where each entry of L(j) ∈ Rm is an i.i.d. Lap(2/ε)

3 Send y(j) to the central coordinator

4 At the Central Coordinator:

5 Collect y(j) sent by the servers and compute y =
∑

j∈[v] y
(j)

6 Let M = Θ(v log(mv)/(αε))
7 Compute L = {i ∈ [m] | y[i] ≥M/2} and send L and M back to each server
8 For Central Coordinator and all servers:

9 Run pattern counting (Algorithm 1) for x
(1)

\L , · · · , x
(v)

\L , M and privacy parameter ε/2

10 At the Central Coordinator:

11 Get countρ for every ρ ∈ {0, 1, · · · ,M}v such that countρ ∈ countρ ±
√
m ·

(
1
ε

)v ·Ov(lnM) (the output of pattern
counting, Theorem B.1)

12 return
∑

i∈L y[i]p +
∑

ρ∈{0,1,··· ,M}v countρ ·
(∑

j∈[v] ρ
(j)

)p

of L(j) being an independent Laplace random variable with parameter 1/ε and sends x(j) + L(j) to the central

coordinator. Clearly, the message y(j) = x(j) + L(j) sent by server j is ε-DP with respect to x(j) for j ∈ [v]. The
central coordinator then computes the vector y =

∑v
j=1 y

(j). We need to use the following lemma.

Lemma C.1. With probability ≥ 0.99, ∥
∑

j∈[v] L
(j)∥∞ ≤ (Cv/ε) ln(mv), for some constant C.

Proof. For j ∈ [v] and i ∈ [m], the coordinates L(j)[i] are independent random variables drawn from Lap(1/ε). For

any fixed i, j, with probability ≥ 1− 1/(100(mv)2), |L(j)[i]| ≤ (C/ε) ln(mv) for a large enough constant C. By a

union bound, we obtain that with probability ≥ 99/100, maxi,j |L(j)[i]| ≤ (C/ε) ln(mv). Thus

∥
v∑

j=1

L(j)∥∞ = max
i

|
v∑

j=1

L(j)[i]| ≤ (Cv/ε) ln(mv).

Thus if x[i] =
∑v

j=1 x
(j)[i] is already large enough, i.e, Ω((Cv/(εα)) ln(mv)) for some multiplicative error

parameter α ∈ (0, 0.5), then the amount of noise added does not distort x[i] by an α fraction from the above
lemma. Moreover, looking at the values of y[i], the central coordinator can determine which coordinates of x are
large. Let the set of coordinates that are determined as large be L. For i ∈ L, we have that y[i] ∈ (1± α)x[i] and
therefore the coordinator gets a (1± α)p approximation for ∥xL∥pp. For all i /∈ L, we have x[i] ≤ O((v/εα) ln(mv)).
Now, the Central Coordinator uses the pattern counting algorithm to approximately count the number of indices
i with x[i] value 1, 2, · · · , O((v/εα) ln(mv)) respectively and uses the approximate counts to obtain an estimation
for

∑
i/∈L(

∑v
j=1 x

(j)[i])p and overall approximation ∥x∥pp = ∥xL∥pp + ∥x\L∥pp. We have the following theorem. We
describe the full procedure in Algorithm 2.

Theorem C.2 (ℓp Moment estimation). Suppose there are v servers where each server j has a non-negative
integer vector x(j) of m dimensions. Given p > 0, α ∈ (0, 0.5) and ε ∈ (0, 0.5), there is an ε-DP algorithm in
the vertical federated learning model and outputs an estimation Est that with probability ≥ 0.9 satisfies Est ∈
(1± α)p∥x∥pp ± C ′

v

√
mε−(p+v) · (v log(mv)/α)p polylog(logm, 1/ε, 1/α), where C ′

v is a factor that depends only on v.
In addition, the total size of messages sent by each server is at most O(vm log(mv)/(αε)).

Proof. Let the event that ∥
∑v

j=1 L
(j)∥∞ ≤ (Cv/ε) ln(mv) be E1 and let α ∈ (0, 1/2] be the given multiplicative

approximation parameter. The set L computed by Algorithm 2 is defined as

L := {i ∈ [m] | y[i] ≥ (Cv/αε) lnmv}.

Let x :=
∑

j∈[v] x
(j). Conditioned on the event E1, we have for all i ∈ L that x[i] ≥ y[i]−∥

∑v
j=1 L

(j)∥∞ ≥ (1−α)y[i]
and x[i] ≤ y[i] + ∥

∑v
j=1 L

(j)∥∞ ≤ (1 + α)y[i]. Thus for all i ∈ L, the value y[i] is a good approximation for x[i]. We
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further have that conditioned on E1, for all i /∈ L, x[i] ≤ y[i]+∥
∑v

j=1 L
(j)∥∞ ≤ (Cv/(εα)) ln(mv)+(Cv/ε) ln(mv) ≤

(2Cv/(εα)) ln(mv).
Let xL be the vector satisfying ∀i ∈ L, xL[i] = x[i] and ∀i ̸∈ L, xL[i] = 0. Let x\L = x − xL. Thus, ∥x∥pp =

∥xL∥pp + ∥x\L∥pp. Let M := ⌈(2Cv/(εα)) ln(mv)⌉. From above
∑

i∈L y[i]
p gives a (1± α)p approximation for ∥xL∥pp

and ∥x\L∥pp =
∑M

ℓ=0 |{i /∈ L | x[i] = ℓ}| · ℓp. Define countℓ := |{i /∈ L | x[i] = ℓ}|. Now approximating countℓ for all

0 ≤ ℓ ≤ M suffices to approximate ∥x\L∥pp. Let ρ = (ρ(1), . . . , ρ(v)): ρ(j) ∈ [M ] ∪ 0 for all j and
∑v

j=1 ρ
(j) ≤ M .

Given ρ, we define countρ := |{i /∈ L | ∀j ∈ [v] : x(j)[i] = ρ(j)}| which implies countℓ =
∑

ρ : (
∑v

j=1 ρ(j))=ℓ countρ.

Setting the failure probability γ = 0.01 and privacy parameter as ε in Theorem B.1, we obtain estimates countρ
for all the required patterns and then obtain that

∥x\L∥pp =
∑
ρ

countρ ·

 v∑
j=1

ρ(j)

p

∈
∑
ρ

countρ ·

 v∑
j=1

ρ(j)

p

±
√
m ·

(
1

ε

)v

·Ov(ln(M)) ·Mp.

Noting that M = O(v ln(mv)/(εα)), we obtain

∥x\L∥pp =
∑
ρ

countρ

 v∑
j=1

ρ(j)

p

±
√
m ·

(
v log(mv)

α

)p

·
(
1

ε

)p+v

· C ′
v · polylog(logm, 1/ε, 1/α).

Finally, combined with the approximation for ∥xL∥pp, we obtain an estimator Est that satisfies

Est ∈ (1± α)p∥x∥pp ±
√
m ·

(
v log(mv)

α

)p

·
(
1

ε

)p+v

· C ′
v · polylog(logm, 1/ε, 1/α).

The first stage of the algorithm that computes the set of large coordinates L is ε differentially private by Laplace
Mechanism. The second stage of the algorithm, that runs Algorithm 1 with privacy parameter ε is ε differential
private by composition of differential privacy. Finally, the algorithm is overall 2ε differentially private and we obtain
the theorem statement by rescaling ε.

D Euclidean k-Clustering

In this section, we present a differentially private k-clustering algorithm in the vertical federated learning model.
The k-clustering problem is stated as the follows. Given input A ∈ Rm×d where each row A[i] denotes a d-
dimensional point, the goal of k-clustering problem is to find a set of k centers C ∈ Rk×d such that costp(A,C) :=∑

i∈[m] minj∈[k] ∥A[i]−C[j]∥p2 is minimized where p ≥ 1 is some constant. In some cases, each point in A is assigned by

a non-negative weight w(·), and the k-clustering cost is written as costw,p(A,C) :=
∑

i∈[m] w[i]·minj∈[k] ∥A[i]−C[j]∥p2.
Note that the problem is known as k-means for p = 2, and it is known as k-median for p = 1. In the vertical
federated learning model, A is partitioned vertically over v servers, i.e., A = [A(1) · · · A(v)], and we want to develop
a differentially private algorithm such that the central coordinator learns (approximate) centers at the end of the
algorithm. Furthermore, ∥A[i]∥2 for each row i is known to be at most ∆, i.e., every data point is guaranteed to be

in a ball with radius ∆. A neighboring dataset A′(j) of A(j) has at most one different row from A(j). The difference

can be arbitrary but it should satisfy that each row of A′ = [A′(1) A′(2) · · · A′(v)] is still in the ball with radius ∆.
This is a common assumption in the literature of differentially private k-clustering (see e.g., [52, 44, 8, 25, 12, 13]).
In the following, we give a formal definition of the approximate solutions to k-clustering.

Definition D.1. Let A ∈ Rm×d, w : [m] → R≥0 and C∗ ∈ Rk×d be the optimal k-clustering solution with respect to
(A,w) for power p. If C satisfies costw,p(A,C) ≤ γcostw,p(A,C

∗) + η and C contains exactly k centers, we say C is a
(γ, η)-approximation for ℓp k-clustering of (A,w). If η = 0, we say C is a γ-approximation. If costw,p(A,C) satisfies
the approximation guarantee but C has k′ > k centers, then C is a (γ, η)-bicriteria approximation (or γ-bicriteria
approximation).

Theorem D.2 (Bicriteria approximate k-clustering). The computation of Ĉ in Algorithm 3 is (ε/2, δ)-DP in the
vertical federated learning model. Furthermore, Ĉ is a (max(ζ, ζ−1)γ,max(ζ, 1)η)-bicriteria approximation for ℓp
k-clustering of A where A =

[
A(1) A(2) · · · A(v)

]
∈ Rm×d, γ = maxj∈[v] γ

(j), η =
∑

j∈[v] η
(j) and ζ = vp/2−1. The

total size of messages sent by each server j for computing Ĉ is at most O(k · d(j)) = O(kd).
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Proof. Firstly, let us consider the privacy guarantee. To compute Ĉ, since each server only sends an (ε/2, δ)-DP
approximate k-clustering solution, the whole algorithm for computing Ĉ is (ε/2, δ)-DP in the vertical federated
learning.

The communication cost follows from the size of Ĉ(j).
Next, let us consider the approximation guarantee. Let C∗ =

[
C∗(1) C∗(2) · · · C∗(v)

]
∈ Rk×d be the optimal ℓp

k-clustering for A, where ∀j ∈ [v], C∗(j) ∈ Rm×d(j)

. Let ∀i ∈ [m], ϕ(i) := argminb∈[k] ∥A[i]− C∗[b]∥2. Then we have:

costp(A, Ĉ)

=
∑
i∈[m]

min
b∈[|Ĉ|]

∥A[i]− Ĉ[b]∥p2 =
∑
i∈[m]

(
min

b∈[|Ĉ|]
∥A[i]− Ĉ[b]∥22

)p/2

=
∑
i∈[m]

∑
j∈[v]

min
b∈[k]

∥A(j)[i]− Ĉ(j)[b]∥22

p/2

=
∑
i∈[m]

∑
j∈[v]

(
min
b∈[k]

∥A(j)[i]− Ĉ(j)[b]∥p2
)2/p

p/2

≤ vmax(0,p/2−1)
∑
j∈[v]

∑
i∈[m]

min
b∈[k]

∥A(j)[i]− Ĉ(j)[b]∥p2

≤ vmax(0,p/2−1)
∑
j∈[v]

η(j) + γ(j)
∑
i∈[m]

∥A(j)[i]− C∗(j)[ϕ(i)]∥p2


= vmax(0,p/2−1)

∑
j∈[v]

η(j) +

max
j∈[v]

γ(j)
∑
i∈[m]

∑
j∈[v]

∥A(j)[i]− C∗(j)[ϕ(i)]∥p2


≤ vmax(0,p/2−1)

∑
j∈[v]

η(j) +

max
j∈[v]

γ(j) · vmax(0,1−p/2)
∑
i∈[m]

∥A[i]− C∗[ϕ(i)]∥p2


= vmax(p/2−1,1−p/2) max

j∈[v]
γ(j) · costp(A,C∗) + vmax(0,p/2−1)

∑
j∈[v]

η(j),

where the first inequality follows from Holder’s inequality and convexity, the second inequality follows from that Ĉ(j)

is a (γ(j), η(j))-approximation for A(j), and the third inequality follows from Holder’s inequality and concavity.

Theorem D.3 (Approximate k-clustering). Algorithm 3 is (ε, δ)-DP in the vertical federated learning model.
Furthermore, the output C̄ is a (Op(max(ζ, ζ−1)γ), Op(max(ζ, 1)η + kvν∆p))-approximation for ℓp k-clustering of
A where A =

[
A(1) A(2) · · · A(v)

]
∈ Rm×d, γ = maxj∈[v] γ

(j), η =
∑

j∈[v] η
(j) and ζ = vp/2−1. The total size of

messages sent by each server j is at most O(kd(j)) plus the size of the messages needed for pattern counting.

Proof. Let us first consider the privacy guarantee. Since ∀j ∈ [v], Ĉ(j) is (ε/2, δ)-DP and the messages sent by server
j for pattern counting is (ε/2)-DP, the whole algorithm is (ε, δ)-DP due to composition.

The communication cost is only from two parts: (1) sending Ĉ(j), (2) running pattern counting. Thus, the total
size of messages sent by server j is at most O(kd(j)) plus the size of messages needed for pattern counting.

Next, let us consider the approximation guarantee. Let C∗ be the optimal ℓp k-clustering solution for A. Let

∀i ∈ [m], ψ(i) := argmin(i1,i2,··· ,iv)∈[k]v ∥A[i]− Ĉ[i1, i2, · · · , iv]∥. Let w[ρ] := countρ for every ρ = (i1, i2, · · · , iv) ∈
[k]m, i.e., w[(i1, i2, · · · , iv)] = |{i ∈ [m] | ψ(i) = (i1, i2, · · · , iv)}|. Let γ′ = max(vp/2−1, v1−p/2) ·maxj∈[v] γ

(j), η′ =

max(1, vp/2−1) ·
∑

j∈[v] η
(j). We have

cost(A, C̄)

=
∑
i∈[m]

min
b∈[k]

∥A[i]− C̄[b]∥p2

≤
∑
i∈[m]

(min
b∈[k]

∥Ĉ[ψ(i)]− C̄[b]∥2 + ∥A[i]− Ĉ[ψ(i)]∥2)p

≤ 2p−1(
∑
i∈[m]

min
b∈[k]

∥Ĉ[ψ(i)]− C̄[b]∥p2 + (γ′costp(A,C
∗) + η′))
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= 2p−1(
∑
l∈[k]v

w[l] · min
b∈[k]

∥Ĉ[l]− C̄[b]∥p2 + (γ′costp(A,C
∗) + η′))

≤ 2p−1(
∑
l∈[k]v

ŵ[l] · min
b∈[k]

∥Ĉ[l]− C̄[b]∥p2 +
∑
l∈[k]v

|ŵ[l]− w[l]| ·∆p + (γ′costp(A,C
∗) + η′))

≤ O(2p)(
∑
l∈[k]v

ŵ[l] · min
b∈[k]

∥Ĉ[l]− C∗[b]∥p2 + kvν∆p + (γ′costp(A,C
∗) + η′))

≤ O(2p)(
∑
l∈[k]v

w[l] · min
b∈[k]

∥Ĉ[l]− C∗[b]∥p2 + kvν∆p + (γ′costp(A,C
∗) + η′))

= O(2p)(
∑
i∈[m]

min
b∈[k]

∥Ĉ[ψ(i)]− C∗[b]∥p2 + kvν∆p + (γ′costp(A,C
∗) + η′))

≤ O(2p)(
∑
i∈[m]

(∥A[i]− Ĉ[ψ(i)]∥2 + min
b∈[k]

∥A[i]− C∗[b]∥2)p + kvν∆p + (γ′costp(A,C
∗) + η′))

≤ O(22p)(
∑
i∈[m]

min
b∈[k]

∥A[i]− C∗[b]∥p2 + kvν∆p + (γ′costp(A,C
∗) + η′))

≤ O(22p)(costp(A,C
∗) + kvν∆p + γ′costp(A,C

∗) + η′)

= Op(γ
′)costp(A,C

∗) +Op(η
′ + kvν∆p),

where the first inequality follows from triangle inequality, the second inequality follows from convexity and the fact
that Ĉ is a (γ′, η′)-bicriteria approximation for A (Theorem D.2), the second equality follows from the definition of
weights w and the mapping ψ(·), the third inequality follows from that all points are within a ball with diameter
∆, the fourth inequality follows from C̄ is an O(1)-approximation for (Ĉ, ŵ) and countρ ∈ countρ ± ν, the fifth

inequality follows from
∑

l∈[k]v |w[l]− ŵ[l]| ·minb∈[k] ∥Ĉ[l]− C∗[b]∥p2 ≤ kvν∆p, the third equality follows from the
definition of w and ψ, the sixth inequality follows from triangle inequality, and the seventh inequality follows from
convexity and the fact that Ĉ is a (γ′, η′)-bicriteria solution for A.

By plugging the pattern counting theorem (Theorem B.1), the DP approximate k-means algorithm of [25] and
the non-private approximate k-means algorithm of [14] into Theorem D.3, we get the following corollary.

Corollary D.4 (DP k-means in vertical federated learning). Given partial points A(j) ∈ Rm×d(j)

for each server
j = 1, · · · , v, a privacy parameter ε ∈ (0, 0.5), number of centers k ≥ 1 and a communication/approximation trade-off
parameter ξ ∈ (Ω(1/m), 1], there is an ε-DP algorithm in the vertical federated learning model which outputs an

(O(1), C ′′
v (ε

−1kd logO(1)m+
√
m/ξ (k/ε)

v
log(k))∆2)-approximate k-means solution for A = [A(1) A(2) · · · A(v)] ∈

Rm×d with probability at least 0.99, where C ′′
v is a factor which only depends on v and ∆ is an upper bound of the

radius of the ball which contains all data points (rows) of A. The size of total messages sent by each server j is at
most O(k(d(j) + ξm)). All local computations only need polynomial running time.

For k-median, we obtain the following corollary using private k-means algorithm of [8] and our pattern counting
algorithm.

Corollary D.5 (DP k-median in vertical federated learning). Given partial points A(j) ∈ Rm×d(j)

for each server
j = 1, · · · , v, a privacy parameter ε ∈ (0, 0.5), number of centers k ≥ 1 and a communication-approximation trade-off
parameter ξ ∈ (Ω(1/m), 1], there is an ε-DP algorithm in the vertical federated learning model which outputs an(
O(

√
v),
(

kd logO(1) m
ε +

√
m
ξ

(
k
ε

)O(v)
)
∆
)
-approximate k-median solution for A = [A(1) A(2) · · · A(v)] ∈ Rm×d with

probability at least 0.99, where ∆ is an upper bound of the radius of the ball which contains all data points (rows) of
A. The size of total messages sent by each server j is at most O(k(d(j) + ξm)). All local computations only need
polynomial running time.

E Sketching and Perturbation

In this section, we show simple sketch based DP algorithms for low-rank matrix approximation, least squares linear
regression, and ℓ2 moment estimation in the vertical federated learning model. Recall our setting: There are m users

and v servers. Each server j ∈ [v] holds A(j) ∈ Rm×d(j)

. The entire input A = [A(1) A(2) · · · A(v)] ∈ Rm×d. For each
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server j, the neighbor relation is as follows: A(j) ∼ A′(j) if A(j) −A′(j) = eix
T for some i ∈ [m] and ∥x∥2 ≤ ν(j) i.e.,

two datasets for server j are neighbors if they differ in at most one row by a euclidean norm at most ν(j).

E.1 Low Rank Matrix Approximation

We discuss low rank approximation problem in this section. The algorithm of [27] is the most amenable to the
vertical federated learning setting. They use the fact that if G ∈ Rs×m is a Gaussian matrix with s = O(k), then
the rowspace of G ·A is a good bicriteria approximation for the low rank matrix approximation problem. To obtain
a differentially private mechanism, they output the matrix G ·A+N where N is an s×m Gaussian matrix with
entries of appropriate variance and show that the rowspace of G ·A+N is also a “good” bicriteria approximation
for the low rank approximation problem. We call this technique sketch-and-perturb and it has the desired privacy
guarantees. Based on this technique, we present the final algorithm in Algorithm 4.

Theorem E.1 (Low rank approximation). Suppose there are v servers where each server j holds a submatrix A(j) ∈
Rm×d(j)

. Let A = [A(1) A(2) · · · A(v)] ∈ Rm×d where d =
∑

j∈[v] d
(j). If ∀j ∈ [v],∀A′(j) ∼ A(j), ∥A′(j) − A(j)∥2 ≤

νmax, then given ε > 0, δ ∈ (0, 1), α ∈ (0, 0.5), k ≥ 1, there is an (ε, δ)-DP algorithm in the vertical federated learning

model which outputs V ∈ Rd×k such that ∥A−AV V T∥F ≤ (1+α)∥A−Ak∥F+O
(
ε−1νmax

√
(α−2k + logm) log(1/δ)d

)
holds with probability at least 0.8. In addition, the communication of each server is at most O(kd/α2).

Proof. We note that if A(j) and A′(j) are neighboring datasets for server j, then ∥G(A(j)−(A′(j)))∥F = ∥G∗i ·(A(j)[i]−
A′(j)[i])⊤∥F for some i ∈ [m] and ∥A(j)[i]−A′(j)[i]∥2 ≤ ν(j). Thus the ℓ2 sensitivity of GA(j) is = ν(j) maxi ∥G∗i∥2.

Lemma E.2. Let G be an s×m matrix with independent standard Gaussian entries. Then with probability ≥ 99/100,

max
i∈[m]

∥G∗i∥2 ≤
√
s+ 4

√
logm.

Proof. By Lemma 1 of [36], for any i ∈ [m], Pr[∥G∗i∥22 ≥ (
√
s + 4

√
logm)2] ≤ exp(−2 logm). Hence, by a union

bound, Pr[maxi∈[m] ∥G∗j∥2 ≤
√
s+ 4

√
logm] ≥ 1− 1/m.

The above lemma implies with high probability that the ℓ2 sensitivity of GA(j) is at most ν(j) · (
√
s+ 4

√
logm).

In Algorithm 4, each server first checks if the matrix G has the property that maxi∈[m] ∥G∗i∥2 ≤
√
s+ 4

√
logm. If

the property does not hold, they output FAIL. If the property holds, the j-th server samples a Gaussian matrix N (j)

with each entry being an independent Gaussian random variable with variance C(ν(j))2(s+ logm) log(1/δ)/ε2 for a

large enough constant C. By the properties of Gaussian mechanism, outputting GA(j) +N (j) is (ε, δ)-differentially
private.

Our starting point to prove the utility guarantee in Theorem E.1 is the following theorem that states the result
about how good the Gaussian sketch is for computing a low rank approximation.

Theorem E.3 (Theorem 2.1 of [32]). Let G ∈ Rs×m be a Gaussian matrix with entries given by standard normal
random variables where entries are O(k)-wise independent. Let A be an arbitrary m× n matrix. If s ≥ C ′k/α2 for a
large enough constant C ′, then with probability ≥ 9/10, for all rank k projection matrices P ,

s(1− α)∥A(I − P )∥2F ≤ ∥GA(I − P )∥2F

and

∥GA(I − P )∥2F ≤ s(1 + α)∥A(I − P )∥2F.

From above, we have that each server outputting GA(i) +N (i) is (ε, δ) differentially private with respect to the
data on server i. Let N =

[
N (1) · · · N (v)

]
and V ∈ Rd×k be an orthonormal matrix denoting the top k right

singular vectors of the matrix GA+N . Note that the matrix V can be computed by the Central Coordinator after
receiving the noisy sketches from the servers. Let Vk ∈ Rd×k denote the top k right singular vectors of the matrix A.
We now have

∥A(I − V V T)∥F ≤ ∥GA(I − V V T)∥F√
s(1− α)

≤ ∥(GA+N)(I − V V T)∥F + ∥N(I − V V T)∥F√
s(1− α)
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≤ ∥(GA+N)(I − VkV
T
k )∥F + ∥N(I − V V T)∥F√
s(1− α)

≤
√
s(1 + α)∥A(I − VkV

T
k )∥F + ∥N(I − VkV

T
k )∥F√

s(1− α)

+
∥N(I − V V T)∥F√

s(1− α)

≤ (1 +O(α))∥A−Ak∥F +
2√

s(1− α)
∥N∥F.

As ∥N∥2F ≤
∑

j∈[v] 2(sd
(j))C(ν(j))2(s+logm) log(1/δ)/ε2 with a probability at least 0.99 for a large enough constant

C,

∥A(I − V V T)∥F
≤ (1 +O(α))∥A−Ak∥F

+
2√

1− α

√
ν2maxdC(s+ logm) log(1/δ)/ε2.

Since s = Ck/α2, we obtain the result.
Consider the communication cost, the random seed needs O(k2/α2). The size of O(j) is at most O(kd/α2).

E.2 Least Squares Linear Regression

Our least squares linear regression algorithm is very similar to our low rank matrix approximation algorithm. Recall
the setting for least squares linear regression: Each server j ∈ [v] holds a matrix A(j), and an additional server holds a
label vector b ∈ Rm. The goal is to solve minx ∥[A(1) · · · A(v)]x− b∥22. We say two label vectors b and b′ are neighbors
b ∼ b′ if b − b′ = ∆ei for some i ∈ [m] and |∆| ≤ ν(label). Let OPT denote the optimal value of the problem and
x∗ = A+b be the optimal solution. Let G ∈ Rs×m be a random Gaussian matrix and be shared with every server. The
rows of G are independent, but the entries in the same row of G are O(d)-wise independent. The ℓ2 sensitivity of the
product with G for j-th server is bounded by O(

√
s+ logm)ν(j) with high probability over G. By restricting to only

those matrices G, we obtain that for each server j revealing GA(j)+N (j) is (ε, δ)-DP if each coordinate of N (j) is an
independent Gaussian of variance O((ν(j))2(s+ logm) log(1/δ)ε−2). Correspondingly, the “sketched-and-pertubed”
version of the label vector b is given by G · b+ nlabel where n(label) is an s-dimensional Gaussian vector where each
coordinate is an independent Gaussian random variable with mean 0 and variance O(ν(label)(s+ logm) log(1/δ)ε−2).
Clearly, the overall historical message sent by each server is (ε, δ)-DP. Hence, the “sketched-and-perturbed” version

of the problem we solve is given by minx ∥[GA(1) +N (1) · · · GA(v) +N (v)]x− (Gb+ n(label))∥22. We show that if
s = O(d/α2), then the solution obtained by solving the sketched-and-perturbed problem is a 1 + α multiplicative
approximation along with an additive error term that depends on ε, δ, ∥x∗∥2, α.

Theorem E.4 (Least squares linear regression). Suppose there are v servers where each server j holds a submatrix

A(j) ∈ Rm×d(j)

and there is an additional server which holds a label vector b ∈ Rm. Let A = [A(1) · · · A(v)] ∈ Rm×d

where d =
∑

j∈[v] d
(j). If ∀j ∈ [v],∀A′(j) ∼ A(j), ∥A′(j) − A(j)∥2 ≤ νmax and ∀b′ ∼ b, ∥b′ − b∥2 ≤ ν(label), then given

ε > 0, δ ∈ (0, 1), α ∈ (0, 0.5), there is an (ε, δ)-DP algorithm in the vertical federated learning model which outputs
x̃G ∈ Rd such that ∥Ax̃G − b∥22 ≤ (1 + α)OPT + O(d/α2 + logm) log(1/δ)ε−2(ν2max∥x∗∥22 + (ν(label))2) holds with
probability at least 0.9. In addition, the communication cost of each server is at most O(d2/α2).

Proof. The sketched-and-perturbed problem is equivalent to solving

min
x

∥[GG′]

[
A
∆

]
− [GG′]

[
b
∆′

]
∥22

where G and G′ are s×m and s× (d+ 1) dimensional Gaussian matrices respectively, ∆ is an (d+ 1)× d matrix
defined as

∆ =


∆1

. . .

∆v

0 · · · 0
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with ∆j defined as

O(
√

(ν(j))2(s+ logm) log(1/δ)ε−2) · Id(j)

and ∆′ is a (d + 1)-dimensional vector with the first d coordinates 0 and the last coordinate being equal to

O(
√
(ν(label))2(s+ logm) log(1/δ)ε−2). If s = Ω(d/α2), then 1√

s
[GG′] is a 1±α subspace embedding [63] for a fixed

d+ 1 dimensional subspace with a probability ≥ 99/100. Thus if x̃G is the solution to the sketched problem, then

∥Ax̃G − b∥22 ≤ (1 + α)(∥Ax∗ − b∥22 + ∥∆x∗ −∆∥22).

As ∥∆∥22 ≤ O(ν2max(s+ logm) log(1/δ)ε−2) and ∥∆′∥22 = O((ν(label))2(s+ logm) log(1/δ)ε−2), we obtain

∥Ax̃G − b∥22

≤ (1 + α)OPT +
C(d/α2 + logm) log(1/δ)ν2max

ε2
∥A+b∥22

+
C(d/α2 + logm) log(1/δ)(ν(label))2

ε2
.

Here νmax = maxj∈[v] νj .

Consider the communication cost, the random seed needs O(d2/α2). The size of GA(j) +N (j) is O(d2/α2) as
well.

E.3 ℓ2 Moment Estimation

The algorithm for ℓ2 moment estimation is similar as above algorithms.

Theorem E.5 (ℓ2 Moment estimation). Suppose there are v servers where each server j holds a vector x(j) ∈ Rm .

Let x =
∑

j∈[v] x
(j). If ∀j ∈ [v],∀x′(j) ∼ x(j), ∥x′(j) − x(j)∥∞ ≤ ν(j), there is an (ε, δ)-DP algorithm in the vertical

federated learning model which outputs an estimation of ∥x∥22 in (1± α)∥x∥22 ± log(m) log(1/δ)ε−2α−1v2ν2max holds
with probability at least 0.9. In addition the communication cost of each server is at most O(1/α2).

The algorithm is as follows. Since each server j holds a matrix A(j) with only d(j) = 1 column. We use x(j) to

denote the vector A(j). Note that for any neighboring dataset x′
(j) ∼ x(j), it satisfies ∥x′(j)−x(j)∥∞ ≤ ν(j). The goal

of ℓ2 moment estimation is to estimate ∥
∑

j∈[v] x
(j)∥22. Similar as before, let G ∈ Rs×m be a random Gaussian matrix

and be shared with every server. The rows of G are independent, but the entries in the same row of G are O(1)-wise
independent. The ℓ2 sensitivity of the product with G for j-th server is bounded by O(

√
s+ logm)ν(j) with high

probability over G. By restricting to only those matrices G, we obtain that for each server j revealing Gx(j)+n(j) is
(ε, δ)-DP if each coordinate of n(j) is an independent Gaussian of variance O((ν(j))2(s+ logm) log(1/δ)ε−2). Then
the Central Coordinator outputs ∥ 1√

s

∑
j∈[v](Gx

(j) +n(j))∥22 as an estimation of the ℓ2 moment. It turns out that it

is enough to set s = Θ(1/α2) where (1± α) is the multiplicative approximation factor.

Proof of Theorem E.5. Due to our choice of G, then ℓ2 sensitivity of Gx(j) is at most O(
√
s+ log(m) · ν(j)). Thus,

the algorithm is (ε, δ)-DP when n(j) are Gaussian random variables with variance Cν2max(s+ logm) log(1/δ)/ε2 for
some sufficiently large constant C. Therefore, we have∥∥∥∥∥∥ 1√

s
(Gx+

∑
j∈[v]

n(j))

∥∥∥∥∥∥
2

≤ 1√
s
∥Gx∥2 +

1√
s

∑
j∈[v]

∥∥∥n(j)
∥∥∥
2

≤ 1√
s
∥Gx∥2 +O(v · νmax

√
1 + log(m)/s log(1/δ)/ε2)

with probability at least 0.99. Due to Johnson–Lindenstrauss lemma with probability at least 0.99, 1√
s
∥Gx∥2 ≤

(1 + α)∥x∥2. Thus, with probability at least 0.98∥∥∥∥∥∥ 1√
s
(Gx+

∑
j∈[v]

n(j))

∥∥∥∥∥∥
2

2

≤ (1 +O(α))∥x∥22 +O(v2ν2max log(m) log(1/δ)/(ε2α)).
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Similarly, with probability at least 0.98,∥∥∥∥∥∥ 1√
s
(Gx+

∑
j∈[v]

n(j))

∥∥∥∥∥∥
2

2

≥ (1−O(α))∥x∥22 −O(v2ν2max log(m) log(1/δ)/(ε2α)).

Finally, consider the communication. The random seeds require O(s) = O(1/α2) communication. Gx(j) + n(j) has
size O(s) = O(1/α2).

F Lower Bounds

As mentioned in the introduction, McGregor et al. [39] study the lower bounds on the additive error of differentially
private algorithms in the setting with two servers. They show the following:

Theorem F.1 (§ 4.2 of [39]). Let x(1) ∈ { 0, 1 }m be the vector at server 1 and x(2) ∈ { 0, 1 }m be the vector at
server 2. Any ε DP VFL algorithm for computing ⟨x(1), x(2)⟩ or the Hamming distance ∥x(1) − x(2)∥1 must have an
additive error of Ω(

√
m) with a large probability.

Note that the Hamming distance ∥x(1) − x(2)∥1 is exactly equal to count(1,0) + count(0,1) and hence any pattern
counting algorithm can compute the Hamming distance and therefore we obtain that a pattern counting algorithm
in the DP VFL setting must also have an additive error of Ω(

√
m). We can similarly obtain lower bounds on

the additive error for ℓp norm estimation in the case of two servers by reducing the Hamming distance problem
to ℓp norm estimation as follows: define A := count(0,0), B := count(0,1) + count(1,0) and C := count(1,1). Define

z(1) = 1 − x(1) and z(2) = 1 − x(2). Note that z(1), z(2) are also binary vectors. Now, W := ∥x(1) + x(2)∥pp =

B + C · 2p and W ′ := ∥z(1) + z(2)∥pp = A · 2p + B. We additionally have A + B + C = m. Solving for B we get,

B = (m · 2p − (W +W ′))/(2p − 2). Let W̃ (resp. W̃ ′) be an approximations of W (resp. W ′) using an ε/2 differential

private algorithm. Then, B̃ := m·2p−(W̃+W̃ ′)
2p−2 is an approximation for B. Now, if the additive error in W̃ and W̃ ′ is

at most c(2p − 2)
√
m, then the additive error in B̃ is at most 2c

√
m which implies that any DP VFL algorithm

that approximates the ℓpp value of the sum of the vectors must have an additive error of Ω((2p − 2)
√
m). Note that

for p = 1, we do not get an Ω(
√
m) lower bound as ∥x(1) + x(2)∥1 = ∥x(1)∥1 + ∥x(2)∥1 when both x(1) and x(2)

are nonnegative. Now, server j can use the Laplace mechanism to send an approximation of ∥x(j)∥1 to the central
coordinator and therefore there is an ε DP VFL algorithm with an additive error of only O(1/ε).

We note that the lower bound is only on the protocols that only have an additive error but our upper bounds
for ℓp norm estimation additionally have a multiplicative error as well. Our result for ℓ2 estimation using the
sketch-and-perturb technique shows that algorithms that have a multiplicative error need not incur the additive
error of Ω(

√
m). Hence, it is still possible that for other values of p, our algorithms have a sub-optimal dependence

on m and that the
√
m additive error may be removable since we allow for multiplicative error as well.

G Other Related Work

The concept of federated learning is proposed by [34, 35, 40] which has received extensive attention from the machine
learning community in the past fewer years. We refer readers to [66] for a survey for the concepts and applications of
federated learning.

For the vertical federated learning model, there is a long line of work developing non-DP machine learning
algorithms includes e.g., [29, 62, 37, 66, 65, 28, 54, 10, 9, 15].

In the non-federated learning model, there is a long line of work for DP algorithms for moment estimation [20,
41, 17, 3, 49, 11, 50, 7, 59, 5], clustering [6, 45, 23, 26, 42, 60, 46, 47, 53, 24, 2, 44, 30, 52, 25, 31, 43, 4, 12, 13], and
numerical linear algebra problems [6, 27, 33, 19, 38, 56, 1, 55].

The local DP model can be regarded as a DP model for horizontal federated learning. Learning algorithms have
also been heavily studied in the local DP model, including e.g., clustering [44, 52, 8, 51] and numerical linear algebra
algorithms [55, 1].

Consider DP algorithms in vertical federated learning. [58, 48, 67] studied how to make the optimization process
differentially private in the vertical federated learning model. [64] studied DP algorithms for linear regression in the
vertical federated learning. It studied the distance between the output coefficient vector and the ground truth and
had assumption on the input distribution while our algorithm studies the worst case approximation guarantee.
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H Local Differential Privacy and Differential Privacy in Vertical Fed-
erated Learning

Definition H.1 (Local DP). Given a dataset A containing m data points A[1], A[2], · · · , A[m], if a mechanism
M has the form M(A) = Dec(Enc(A[1]),Enc(A[2]), · · · ,Enc(A[m])) where Enc is an encoding algorithm which
takes only one data point and Dec is a decoding algorithm which outputs a solution based on the coding for all
input points, then M is (ε, δ)-local DP (resp. ε-local DP) if (Enc(A[1]),Enc(A[2]), · · · ,Enc(A[m])) is (ε, δ)-DP (resp.
ε-DP).

It is obvious that local DP is a stronger privacy notation than standard DP. The model of local DP can be seen
as the DP model for horizontal federated learning, i.e., each device holds the entire data point of a user and the
overall historical messages sent by a device must be DP with respect to its user data.

Note that since the encoder algorithm Enc in the local DP algorithm can use the entire information of a single
data point at a time, local DP algorithm usually does not imply a DP algorithm in the vertical federated learning.
For example, the local DP k-clustering algorithms of [8, 51] heavily relies on the location information of each data
point. Thus, those algorithms cannot be implemented in the vertical federated learning.

Theorem H.2 ([18]). The randomized response mechanism is ε-local DP.

Due to above theorem, the messages sent by each server in the pattern counting algorithm that we described
in Algorithm 1 is not only DP but also local DP with respect to the data held by the server. Thus, our pattern
counting algorithm and its applications work for a even more restrictive DP model which is a DP model of the
mixture of horizontal federated learning and vertical federated learning: Given a dataset A containing m data points
A[1], A[2], · · · , A[m] where each data point A[i] contains d attributes A[i, 1], A[i, 2], · · · , A[i, d], we want a mechanism
M with the form

M(A) = Dec(Enc(A[1, 1]), · · · ,Enc(A[1, d]), · · · ,Enc(A[m, 1]), · · · ,Enc(A[m, d])))

where Enc is an encoding algorithm taking one attribute of one user at a time, and Dec takes all encoded messages
to output a solution, and the overall message

(Enc(A[1, 1]), · · · ,Enc(A[1, d]), · · · ,Enc(A[m, 1]), · · · ,Enc(A[m, d])))

is DP. We give an example of potential scenarios for the above hybrid partitioning model for federated learning.
Suppose there are two data repositories where the first holds some diet information of all users and the second holds
some health information of all users. But the data of the first repository is collected by many untrusted food delivery
apps and the data of the second repository is collected by many untrusted healthcare apps. Each app only collects a
subset of attributes of a subset of users and the message sent by a user to an app must be differentially private to
protect user privacy. In this case, an algorithm such as our pattern counting algorithm which is both local DP and
DP in vertical federated learning would provide a way to analyze the correlation between diet habits and health
conditions.

It is easy to verify that both our ℓp moment estimation algorithm and k-clustering algorithm also provide DP
algorithms in the hybrid partitioning model for federated learning.
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Algorithm 3: Approximate ℓp k-Clustering

Input: Partial points A(j) ∈ Rm×d(j) for each server j ∈ [v] where
∑

j∈[v] d
(j) = d, privacy parameters

ε > 0, δ ∈ [0, 1), power p ≥ 1 and clustering parameter k > 0.
Output: C̄ ∈ Rk×d

1 for each server j = 1, · · · , v concurrently do

2 Compute an (ε/2, δ)-DP (γ(j), η(j))-approximation Ĉ(j) for ℓp k-clustering of A(j) // For example, run

algorithms of [25] or [13]

3 Create a vector x(j) ∈ [k]m where ∀i ∈ [m], x(j)[i] := argminb∈[k] ∥A(j)[i]− Ĉ(j)[b]∥2
4 For Central Coordinator and all servers, run pattern counting (Algorithm 1 or the variant mentioned in Theorem B.2)

for x(1), x(2), · · · , x(v) and M = k, with privacy parameter ε/2
5 At the Central Coordinator:

6 Collect the partial centers Ĉ(1), Ĉ(2), · · · , Ĉ(v) sent by the servers
7 Get countρ for every ρ ∈ [k]v such that countρ ∈ countρ ± ν (the output of pattern counting)

8 Compute Ĉ =
{[

Ĉ(1)[i1] Ĉ
(2)[i2] · · · Ĉ(v)[iv]

]
| (i1, i2, · · · , iv) ∈ [k]v

}
⊂ Rd

9 Due to the construction of Ĉ, each point in Ĉ can be indexed by ρ = (i1, i2, · · · , iv) ∈ [k]v, and we assign a weight
ŵ[ρ] = max(0, countρ)

10 Compute an O(1)-approximation C̄ for ℓp k-clustering of (Ĉ, ŵ) // For example, use [14]

11 return C̄

Algorithm 4: Distributed Differentially Private Low Rank Matrix Approximation

Input: Each server j has an m× d(j) matrix A(j), approximation parameter α, and rank parameter k ≥ 1,
∀j ∈ [v],∀A′(j) ∼ A(j), it satisfies ∥A′(j) −A(j)∥2 ≤ ν(j)

Output: A good subspace for low rank matrix approximation
1 G ∈ Rs×m ← A Gaussian Random matrix with s := Θ(k/α2) rows and m columns where the m entries in each row

are O(k)-wise independent, and different rows are fully independent.;
// If the ℓ2 norms of any column of G is larger than

√
s+ 4

√
logm, output FAIL

2 for Each server j = 1, · · · , v in parallel do

3 O(j) ← GA(j) +N (j) where each entry of N (i) is an independent Gaussian random variable with a variance

Θ((ν(j))2(α−2k + logm) log(1/δ)/ε2);

4 Send O(j) to the Central Coordinator;

5 At the Central Coordinator:;

6 O ← [O(1) · · · O(v)];
7 V ← top k right singular vectors of O;
8 return V ;
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