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ABSTRACT

In this work, we design a debiased parametric bootstrap framework
for statistical inference from differentially private data. Existing
usage of the parametric bootstrap on privatized data ignored or
avoided handling the effect of clamping, a technique employed by
the majority of privacy mechanisms. We show that ignoring the
impact of clamping often leads to under-coverage of confidence
intervals and miscalibrated type I errors of hypothesis tests. The
main reason for the failure of the existing methods is the incon-
sistency of the parameter estimate based on the privatized data.
We propose using the indirect inference method to estimate the
parameter values consistently and use the improved estimator for
parametric bootstrap inference. To implement the indirect estima-
tor, we present a novel simulation-based approach along with the
theory establishing the consistency of the corresponding paramet-
ric bootstrap distribution. Our simulation studies show that our
framework produces confidence intervals with the correct coverage
and performs hypothesis testing with the correct type I error in
finite sample settings.
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1 INTRODUCTION

In the age of big data, utilizing diverse data sources to train models
offers significant benefits but also leaves the data providers vul-
nerable to malicious attacks. To mitigate privacy concerns, Dwork
et al. [9] introduced the concept of Differential Privacy (DP), which
quantifies the level of privacy assurance offered by a specific data
processing procedure. Following the advent of DP, numerous mech-
anisms have been developed to provide DP-guaranteed point es-
timates for parameters [10]. These mechanisms inject additional
uncertainty into the output to manage the tradeoff between its
utility and privacy guarantee.

Statistical inference not only aims to provide an accurate point
estimator for a population parameter of interest but also attempts
to quantify the inherent uncertainty of such an estimate due to the
randomness of population sampling. The sampling distributions
of the statistics based on random samples are commonly utilized
in inference, such as in constructing confidence intervals (CI) or
performing hypothesis tests (HT). As previously discussed, the
output of a DP mechanism incorporates extra noise, resulting in
the sampling distribution of DP outputs differing from that of non-
private outputs. To accommodate this difference, several methods
have been developed, supported by theoretical analysis in specific

settings, to perform inference based on DP estimates. Our paper
assumes a data-generating model and accepts any DP mechanism.
We propose using this model to obtain an indirect estimator used
in parametric bootstrap (PB) for statistical inference under the DP
guarantee. The work most relevant to our study is that of Awan and
Wang [2], who also employ a data-generating model in a simulation-
based methodology, repro samples method [17], to generate finite-
sample valid CIs and HTs from DP summary statistics. However,
their approach suffers from over-conservativeness and extensive
computation.

Using PB in DP statistical inference is not a novel approach. Du
et al. [8] proposed various methods to construct DP confidence
intervals, differing in parameter estimation techniques, and they all
use PB to derive confidence intervals through simulation. Ferrando
et al. [12] were the first to theoretically analyze the use of PB with
DP guarantees. They validated the consistency of their confidence
intervals in two private estimation settings: exponential families
and linear regression via sufficient statistic perturbation (SSP). Al-
abi and Vadhan [1] leveraged PB to conduct DP hypothesis testing
specifically for linear regression. However, these three methods
all assume that clamping does not influence the data distribution,
an assertion that is overly strong and can result in inaccurate in-
ferences. To correct the clamping bias, using our novel adaptive
indirect estimator, we have developed a debiased parametric boot-
strap framework with theoretical guarantees of consistency and
demonstrated the effectiveness through simulations.

2 BACKGROUND

For 𝑝 ∈ N+, 𝑥 ∈ R𝑝 , Ω ∈ R𝑝×𝑝 , let ∥𝑥 ∥Ω := 𝑥⊺Ω𝑥 . For Ω1,Ω2 ∈
R𝑝×𝑝 , we write Ω1 ≻ Ω2 if Ω1 − Ω2 is positive definite, and Ω1 ⪰
Ω2 if Ω1 − Ω2 is positive semidefinite. 𝑁 (𝜇, 𝜎2) denotes a normal
distributionwithmean 𝜇 and variance𝜎2, andΦ(·) is the cumulative
distribution function (CDF) of 𝑁 (0, 1). We write 𝑋𝑛 = 𝑂𝑝 (𝑎𝑛) if
for any 𝜖 > 0, there are 𝑀 and 𝑁 such that P( |𝑋𝑛/𝑎𝑛 | ≥ 𝑀) < 𝜖

for any 𝑛 > 𝑁 . We denote a dataset by 𝐷 := (𝑥1, . . . , 𝑥𝑛) which has
sample size |𝐷 | = 𝑛, and if 𝑥𝑖

iid∼ 𝐹 (𝑥 |𝜃∗), we write 𝐷 ∼ 𝐹𝑛 (𝑥 |𝜃∗).

2.1 Differential privacy

In this paper, we use 𝜀-DP [9] and Gaussian DP (GDP) [7] in our
examples although our results also apply to many other DP notions.

A mechanism is a randomized function 𝑀 that takes a dataset
𝐷 as input and outputs a random variable or vector 𝑆 . The Ham-
ming distance between two datasets with the same sample sizes is
𝑑 (𝐷,𝐷′), the number of entries in which 𝐷 and 𝐷′ differ.

Definition 2.1. 𝑀 satisfies 𝜀-DP if for any 𝑑 (𝐷, 𝐷′) ≤ 1 and
measurable set 𝑆 , 𝑃 (𝑀 (𝐷) ∈ 𝑆) ≤ exp(𝜀)𝑃 (𝑀 (𝐷′) ∈ 𝑆).
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Definition 2.2. 𝑀 satisfies 𝜇-GDP if for any 𝑑 (𝐷, 𝐷′) ≤ 1, any
hypothesis test between 𝐻0 : 𝑆 ∼ 𝑀 (𝐷) and 𝐻1 : 𝑆 ∼ 𝑀 (𝐷′) has
a type II error 𝛽 bounded below by Φ(Φ−1 (1 − 𝛼) − 𝜇) where 𝛼 is
the type I error.

Definition 2.2 means that it is harder to distinguish 𝑀 (𝐷) from
𝑀 (𝐷′) than to distinguish 𝑁 (0, 1) from 𝑁 (𝜇, 1) if𝑀 is 𝜇-GDP and
𝑑 (𝐷, 𝐷′) ≤ 1.

2.2 Parametric bootstrap

Definition 2.3. Let𝐷 ∼ 𝐹𝑛 (𝑥 |𝜃∗) where the true unknown param-
eter is 𝜃∗. Given 𝜃 (𝐷) and 𝜏 (𝐷) as estimates of 𝜃∗ and 𝜏∗ := 𝜏 (𝜃∗)
respectively, where 𝜏∗ is the parameter of interest, the paramet-
ric bootstrap estimator of 𝜏∗ is defined by 𝜏 (𝐷𝑏 ) where 𝐷𝑏 ∼
𝐹𝑛 (𝑥 |𝜃 (𝐷)).

We use the empirical CDF of {𝜏 (𝐷𝑏 )}𝐵
𝑏=1 to approximate the

sampling distribution of 𝜏 (𝐷), and construct CIs or perform HTs
for 𝜏∗. If it is the case that 𝜃 (𝐷) − 𝜃∗ = 𝑂𝑝 ( 1√

𝑛
), Beran [4] showed

that the asymptotic equivariance of 𝜏 guarantees the consistency of
PB, which implies that the coverage of CIs and the type I error of
HTs are asymptotically consistent with the nominal levels.

Definition 2.4 (Asymptotic equivariance [4]). Let 𝐻𝑛 (𝜃∗) be the
distribution of

√
𝑛(𝜏 (𝐷) − 𝜏 (𝜃∗)) where 𝐷 ∼ 𝐹𝑛 (𝑥 |𝜃∗). 𝜏 is asymp-

totically equivariant if 𝐻𝑛 (𝜃∗ + ℎ𝑛/
√
𝑛) converges to a limiting

distribution 𝐻 (𝜃∗) for all convergent sequences ℎ𝑛 → ℎ and all 𝜃∗.

Definition 2.5 (Bootstrap consistency [15]). Let𝐷 ∼ 𝐹𝑛 (𝑥 |𝜃∗) and
𝐷𝑏 ∼ 𝐹𝑛 (𝑥 |𝜃 (𝐷)). 𝐻𝑛 (𝜃∗) is the distribution of

√
𝑛(𝜏 (𝐷) − 𝜏 (𝜃∗)),

and 𝐻𝑛 (𝜃 (𝐷)) is the random distribution of
√
𝑛(𝜏 (𝐷𝑏 ) − 𝜏 (𝐷))

depending on 𝐷 . 𝜏 (𝐷𝑏 ) is consistent if 𝐻𝑛 (𝜃 (𝐷))
𝑃−→ 𝐻𝑛 (𝜃∗) .

Proposition 2.6 (Parametric bootstrap consistency [4, 12]). Sup-

pose
√
𝑛(𝜃 (𝐷) − 𝜃∗) 𝑑−→ 𝐽 (𝜃∗) and 𝜏 is asymptotically equivariant

with continuous 𝐻 (𝜃∗). Then the parametric bootstrap estimator
𝜏 (𝐷𝑏 ) is consistent.

2.3 Inaccurate inference due to clamping

As PB only requires a point estimator, 𝜃 (𝐷), for obtaining 𝐷𝑏 and
𝜏 (𝐷𝑏 ), the privacy guarantee for the private statistical inference is
the same as the DP point estimator because of the post-processing
property [10]. However, DP estimators are often biased, which leads
to inaccurate inference results from the naïve use of PB.

We use two examples in the existing literature to demonstrate
the inaccurate inference results in the PB methods using estimators
that are biased due to clamping. The first example is constructing
a CI for the population mean of a normal distribution [16], where
the results in Table 1 demonstrate the under-coverage problem of
using NOISYVAR+SIM [8] to construct a DP CI. The second example
is conducting a HT for one coefficient in linear regression [2] where
the results in Figure 1 show the mis-calibrated type I error of using
the framework of Alabi and Vadhan [1] which is based on PB.

In Section 5, we use these two settings to show the advantage of
using our proposed method.

Privacy guarantee 1-GDP 0.5-GDP 0.3-GDP 0.1-GDP
Coverage 0.803 0.806 0.804 0.819

Table 1: Coverage of private CIs with nominal confidence
level 0.9 for the populationmean of𝑁 (0.5, 1) by NOISYVAR+SIM
[8]. Results are from [16, Table 2].
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Figure 1: Type I error of private HTs on 𝐻0 : 𝛽∗1 = 0 and
𝐻1 : 𝛽∗1 ≠ 0 with a linear regression model 𝑌 = 𝛽∗0 + 𝑋𝛽∗1 + 𝜖
using DP Monte Carlo tests [1] with nominal significance
level 0.05. Results are from [2, Figure 5].

3 DEBIASED PARAMETER ESTIMATION

In this section, we describe the indirect estimator [13], which can
solve the bias issue in the clamping procedure of DP mechanisms.
We also propose an adaptive indirect inference estimator, that auto-
matically optimizes the covariance matrix of the indirect estimator.

The underlying principle of the indirect estimator is to fix the
“random seeds” for synthetic data generation and find the parameter
that makes the synthetic data most similar to the observed statistic.
We describe the indirect estimator with additional consideration of
the DP mechanisms used in releasing the observed statistic.

Let the true model be 𝑍 = 𝑔(𝜃∗;𝑈 ) where 𝜃∗ ∈ Θ ⊆ R𝑞 is the
unknown parameter,𝑈 ∼ 𝐹𝑢 is the source of uncertainty that is un-
observed and following a known distribution 𝐹𝑢 , and𝑔 is a determin-
istic function generating our observation 𝑍 . Note that 𝐹𝑢 does not
depend on 𝜃 . An example is 𝑍 ∼ 𝑁 (𝜇, 𝜎2) which can be represented
as 𝑍 = 𝜇 + 𝜎𝑈 where 𝜃∗ = (𝜇, 𝜎) and 𝑈 ∼ 𝐹𝑢 := 𝑁 (0, 1). For sim-
plicity, we denote z𝑛 := (𝑧1, . . . , 𝑧𝑛), u𝑛 := (𝑢1, . . . , 𝑢𝑛); We write
z𝑛 = 𝑔(𝜃∗;u𝑛) if 𝑧𝑖 = 𝑔(𝜃∗;𝑢𝑖 ), and we write u𝑛 ∼ 𝐹𝑛𝑢 if 𝑢𝑖

iid∼ 𝐹𝑢

for 𝑖 = 1, . . . , 𝑛. Let 𝛽𝑛 ∈ B ⊆ R𝑝 be a statistic calculated from z𝑛
by maximizing a criterion, i.e., 𝛽𝑛 := argmax𝛽∈B𝑄𝑛 (𝛽, z𝑛, uDP)
where uDP ∼ 𝐹DP denotes the source of extra uncertainty intro-
duced by DP mechanisms. While 𝛽𝑛 is often an estimator for 𝜃∗, it
could also be a general set of summary statistics informative for
𝜃∗. The optimization-form definition of 𝛽𝑛 is useful for DP mecha-
nisms such as objective perturbation [5]; It is also compatible with
DP mechanisms like 𝛽𝑛 := 𝑞𝑛 (z𝑛, uDP) since it is equivalent to
𝛽𝑛 := argmax𝛽∈B𝑄𝑛 (𝛽, z𝑛, uDP) := − 1

2 ∥𝛽 − 𝑞𝑛 (z𝑛, uDP)∥
2
2.

As 𝐹𝑢 and 𝐹DP are known, for each𝜃 , we simulate 𝛽𝑛 (𝜃, uℎ𝑛, uℎDP) :=
argmax𝛽∈B𝑄𝑛 (𝛽, zℎ𝑛 (𝜃 ), uℎDP) from synthetic data zℎ𝑛 (𝜃 ) := 𝑔(𝜃 ; uℎ𝑛)

generated with uℎ𝑛
iid∼ 𝐹𝑛𝑢 and uℎDP

iid∼ 𝐹DP, ℎ = 1, . . . , 𝐻 . Let
u[𝐻 ]𝑛 := (u1𝑛, . . . , u𝐻𝑛 ), u

[𝐻 ]
DP := (u1DP, · · · , u

𝐻
DP), and Ω𝑛 ≻ 0.
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Definition 3.1 (Indirect estimator [13]). The indirect estimator is

𝜃IND := argmin
𝜃 ∈Θ






𝛽𝑛 − 1
𝐻

𝐻∑︁
ℎ=1

𝛽𝑛

(
𝜃, uℎ𝑛, u

ℎ
DP

)





Ω𝑛

.

We write 𝛽𝑛
(
𝜃, uℎ𝑛, uℎDP

)
as 𝛽ℎ𝑛 (𝜃 ) if it is clear from context.

In terms of the asymptotic variance of 𝜃IND, there are some
choices of Ω𝑛 better than others. However, the optimal Ω𝑛 may
depend on 𝜃∗ and require additional effort to find a good estimation.
For a novel and computationally efficient approach, we propose to
use the inverse of the sample covariance matrix of 𝛽ℎ𝑛 as an adaptive
Ω𝑛 and show its asymptotic optimality in Remark 4.8.

Definition 3.2 (Adaptive indirect estimator). Let𝑚𝐻
𝛽
(𝜃 ) and 𝑆𝐻

𝛽
(𝜃 )

be the sample mean and covariance matrix of {𝛽𝑛 (𝜃, uℎ𝑛, uℎDP)}
𝐻
ℎ=1.

The adaptive indirect estimator of 𝜃∗ is

𝜃ADI := argmin
𝜃 ∈Θ




𝛽𝑛 −𝑚𝐻
𝛽
(𝜃 )




(
𝑆𝐻
𝛽
(𝜃 )

)−1 .
4 THEORY

In this section, we provide the theoretical guarantees for using the
indirect estimators in parametric bootstrap.

To prove the consistency and asymptotic equivariance of 𝜃IND,
we have the following assumptions.

(A1) sup𝛽∈B |𝑄𝑛 (𝛽, z𝑛, uDP) −𝑄∞ (𝛽, 𝐹𝑢 , 𝐹DP, 𝜃∗) |
P−→ 0 where

𝑄∞ (𝛽, 𝐹𝑢 , 𝐹DP, 𝜃∗) is non-stochastic and continuous in 𝛽 .

(A2)Θ andB are compact. Let𝑏 (𝜃 ) := argmax𝛽∈B𝑄∞ (𝛽, 𝐹𝑢 , 𝐹DP, 𝜃 )
which is continuous and injective (one-to-one), and 𝛽∗ := 𝑏 (𝜃∗). The
Jacobian matrix 𝜕𝑏

𝜕𝜃⊺
exists and is full-column rank.

(A3) sup𝜃 ∈Θ ∥𝛽𝑛 (𝜃, uℎ𝑛, uℎDP) − 𝑏 (𝜃 )∥
P−→ 0.

(A4) Ω𝑛 ≻ 0 are deterministic matrices converging to Ω ≻ 0.

(A5) For every (𝜃, uℎ𝑛, uℎDP),
𝜕𝛽𝑛 (𝜃,uℎ𝑛,uℎDP )

𝜕𝜃
and 𝜕𝑏 (𝜃 )

𝜕𝜃
exist and are

continuous in 𝜃 ;
𝜕𝛽𝑛 (𝜃,uℎ𝑛,uℎDP )

𝜕𝜃

P−→ 𝜕𝑏 (𝜃 )
𝜕𝜃

. 𝐵∗ := 𝜕𝑏 (𝜃 ∗ )
𝜕𝜃

.

(A6) For every (𝛽, z𝑛, uDP),
𝜕𝑄𝑛 (𝛽,z𝑛,uDP )

𝜕𝛽
and 𝜕2𝑄𝑛 (𝛽,z𝑛,uDP )

(𝜕𝛽 ) (𝜕𝛽⊺ ) exist

and are continuous in 𝛽 ;
√
𝑛( 𝜕𝑄𝑛 (𝛽∗,zℎ𝑛 (𝜃 ∗ ),uℎDP )

𝜕𝛽
) d−→ 𝐹 ∗

𝑄,𝑢,DP,

𝐽 ∗ := − 𝜕2𝑄∞ (𝛽∗,𝐹𝑢 ,𝐹DP,𝜃 ∗ )
(𝜕𝛽 ) (𝜕𝛽⊺ )

P←− − 𝜕2𝑄𝑛 (𝛽∗,zℎ𝑛 (𝜃 ∗ ),uℎDP )
(𝜕𝛽 ) (𝜕𝛽⊺ ) .

Remark 4.1. (A1, A3) are for the consistency of 𝛽𝑛 and 𝜃IND as
they are M-estimators [15]. (A2) is for the identifiability of 𝜃∗ using
𝛽𝑛 . (A4) generalizes ℓ2 norm for more efficient 𝜃 . (A5, A6) are for the
Taylor expansion to obtain asymptotical distributions of 𝛽𝑛 and 𝜃
which requires us to have the true model 𝑍 = 𝑔(𝜃∗;𝑈 ) continuous
in 𝜃∗ given any 𝑈 . Note that for 𝑍 following a discrete distribution
such as a Binomial or Poisson distribution, we can transform 𝑍 to
its continuous counterparts [14] as an approximation to the true
data generating process.

Theorem 4.2. Under (A1, A2, A3, A4, A5, A6),
1) 𝜃IND is a consistent estimator of 𝜃∗, and

√
𝑛(𝜃IND − 𝜃∗) converges

in distribution to ((𝐵∗)⊺Ω𝐵∗)−1 (𝐵∗)⊺Ω(𝐽 ∗)−1 (𝑣0 − 1
𝐻

∑𝐻
ℎ=1 𝑣ℎ)

where 𝑣ℎ
iid∼ 𝐹 ∗

𝑄,𝑢,DP for ℎ = 0, 1, . . . , 𝐻 ;

2) 𝜃IND is asymptotically equivariant which implies that the para-
metric bootstrap based on 𝜃IND is consistent.

Remark 4.3. We primarily use the asymptotic results of Theorem
4.2 to establish the consistency of the PB. While the asymptotic dis-
tribution could itself be used for statistical inference [13], it would
require estimating (𝐵∗, 𝐽 ∗, 𝐹 ∗

𝑄,𝑢,DP), and its finite-sample perfor-
mance may be unsatisfactory. However, the asymptotic distribution
is still helpful in constructing an approximate pivot for more effi-
cient statistical inference [3, Table 1] as illustrated in Section 5.2.

Remark 4.4. The first part of Theorem 4.2 on the consistency and
asymptotic distribution is inspired by [13, Propositions 1 and 3]
while we give a more detailed and precise proof and focus on its
application with DP. We generalize the asymptotic distribution of√
𝑛( 𝜕𝑄𝑛

𝜕𝛽
(𝛽∗, zℎ𝑛 (𝜃∗), uℎDP)) from normal distribution [13] to 𝐹 ∗

𝑄,𝑢,DP.
In Example 4.1, we show the necessity of such a generalization in
DP settings.

Example 4.1. For 𝜀 = 1√
𝑛
and 𝑋 = (𝑥1, . . . , 𝑥𝑛) where 𝑥𝑖 ∈ [0, 1],

in order to estimate the population mean corresponding to 𝑋 un-
der 𝜀-DP, we use the Laplace mechanism which releases 𝑞𝑛 :=
1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 + uDP, uDP ∼ Laplace( 1𝑛𝜀 ). Let 𝑄𝑛 (𝛽) := − 1

2 ∥𝛽 − 𝑞𝑛 ∥
2
2,

which indicates 𝑄∞ (𝛽) = − 1
2 ∥𝛽 − 𝛽∗∥22 where 𝛽∗ = E[𝑥𝑖 ]. If

𝑥𝑖
iid∼ Uniform( [0, 1]), we have

√
𝑛( 𝜕𝑄𝑛 (𝛽∗ )

𝜕𝛽
) =
√
𝑛(𝑞𝑛 − 𝛽∗), then

𝐹 ∗
𝑄,𝑢,DP is not normal but a convolution of 𝑁 (0, 1

12 ) and Laplace(1).

Remark 4.5. If there is 𝜃 such that 𝛽𝑛 − 1
𝐻

∑𝐻
ℎ=1 𝛽

ℎ
𝑛 (𝜃 ) = 0, the

indirect estimator is equal to the Just Identified Indirect Inference
estimator [18] which has been shown to enjoy nice properties,
including consistency, asymptotic normality, and finite sample bias
correction, better than the Bootstrap Bias Corrected estimator [18].

To prove the validity of using the adaptive indirect estimator,
𝜃ADI, in parametric bootstrap, we need additional assumptions.

(A7) For any𝜃 and {𝐻𝑛}∞𝑛=1 where lim
𝑛→∞

𝐻𝑛 = ∞, we have𝑛𝑆𝐻𝑛

𝛽
(𝜃 ) P−→

lim
𝑛→∞

Var(
√
𝑛(𝛽ℎ𝑛 (𝜃 ) − 𝑏 (𝜃 ))) = Var( lim

𝑛→∞
√
𝑛(𝛽ℎ𝑛 (𝜃 ) − 𝑏 (𝜃 ))) =:

Σ(𝜃 ) is continuous in 𝜃 , Σ(𝜃∗) ≻ 0, and
𝜕 (𝑛𝑆𝐻𝑛

𝛽
(𝜃 ) )

𝜕𝜃
= 𝑂𝑝 (1).

(A8) For 𝑣 ∼ 𝐹 ∗
𝑄,𝑢,DP, we have E[𝑣] exists and is finite.

Remark 4.6. (A7) is for the consistency of 𝑛𝑆𝐻𝑛

𝛽
(𝜃 ) and 𝜃ADI. The

choice of {𝐻𝑛}∞𝑛=1 and (A8) are for the law of large numbers.

Theorem 4.7. Under (A1, A2, A3, A5, A6, A7, A8), for 𝐻 := 𝐻𝑛 ,
1) 𝜃ADI is a consistent estimator of 𝜃∗, and

√
𝑛(𝜃ADI − 𝜃∗) converges

in distribution to ((𝐵∗)⊺Ω∗𝐵∗)−1 (𝐵∗)⊺Ω∗ (𝐽 ∗)−1 (𝑣 − E(𝑣)) where
𝑣 ∼ 𝐹 ∗

𝑄,𝑢,DP and Ω∗ = Σ(𝜃∗)−1 = Var[(𝐽 ∗)−1𝑣]−1;
2) 𝜃ADI is asymptotically equivariant; therefore, the parametric boot-
strap based on 𝜃ADI is consistent;

3) Var
(
lim
𝑛→∞

√
𝑛(𝜃IND − 𝜃∗)

)
⪰ Var

(
lim
𝑛→∞

√
𝑛(𝜃ADI − 𝜃∗)

)
for any

choice of {Ω𝑛}∞𝑛=1 in 𝜃IND.
3
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Figure 2: Comparison of the bias in different estimates. The
estimator in [12] is the same as the simplified 𝑡 estimator.

Remark 4.8. The last part of Theorem 4.7 shows that the adap-
tive indirect estimator is asymptotically the minimum variance
estimator among the indirect estimators based on 𝑍 .

5 SIMULATION

In this section, we use simulations on DP statistical inference to
demonstrate the performance of our debiased estimator used in PB.
We construct CIs for the population mean and variance of normal
distributions, and we conduct HTs with a linear regression model.
All results are computed over 1000 replicates.

5.1 CI for parameters of a normal distribution

Consider 𝑥1, . . . , 𝑥𝑛
iid∼ 𝑁 (𝜇∗, (𝜎∗)2) where the true parameters are

𝜇∗ = 1 and𝜎∗ = 1. Given𝑛 = 100 and a dataset𝐷 := (𝑥1, . . . , 𝑥𝑛), we
use the Gaussian mechanism to release two statistics for the infer-
ence of 𝜇∗ and 𝜎∗: Let 𝑥𝑖 ]𝑏𝑎 = max(𝑎,min(𝑏, 𝑥𝑖 )), 𝜇 = 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖 ]𝑏𝑎 ,

and �̂�2 = 1
𝑛−1

∑𝑛
𝑖=1 (𝑥𝑖 ]𝑏𝑎 − 𝜇)2; We release �̃� = 𝜇 + (𝑏−𝑎)𝜂1𝑛 and

�̃�2 = �̂�2+ (𝑏−𝑎)
2𝜂2

𝑛 where 𝜂1, 𝜂2
iid∼ 𝑁 (0, 1). Then (�̃�, �̃�2) is

√
2-GDP.

In Table 2, we compare our adaptive indirect estimator with
other estimators used in PB to construct CIs with level 1− 𝛼 = 0.95
and we set 𝑎 = 0, 𝑏 = 3. Let 𝜏 (𝐷) = (�̃�, �̃�2), and the PB estimators
are {𝜏 (𝐷𝑏 )}𝐵

𝑏=1 where 𝐷
𝑏 is generated using 𝑁 (�̃�, �̃�2). The naïve

percentile method uses the 𝛼/2 and 1 − 𝛼/2 percentile of each
dimension of {𝜏 (𝐷𝑏 )}𝐵

𝑏=1 to construct CIs; The simplified 𝑡 method
uses the 𝛼/2 and 1 − 𝛼/2 percentile of {2𝜏 (𝐷) − 𝜏 (𝐷𝑏 )}𝐵

𝑏=1 instead.
Both results suffer from the under-coverage issue.

For the indirect estimator denoted by 𝜃 (𝐷), we use 𝜏 (𝐷) as
the statistic 𝛽𝑛 for the estimation of 𝜃∗ := (𝜇∗, (𝜎∗)2). The PB
estimators are {𝜃 (𝐷𝑏 )}𝐵

𝑏=1 where 𝐷
𝑏 is generated using a normal

distribution with parameter 𝜃 (𝐷). The results of percentile CIs
using PB with the indirect estimator have satisfactory coverage.

We also compare our method with Repro [2], which is another
simulation-based technique similar to the indirect estimator but
does not use PB. The results by Repro are more conservative than
ours by PB since they have much higher coverage but also larger
average width. The other bias correction methods include Efron’s
bias-corrected (BC) percentile method [11], the automatic percentile
method [6], and the method of Ferrando et al. [12].

Figure 2 illustrates the bias in the estimators. The naïve method
is 𝜏 (𝐷), the simplified 𝑡 method is 2𝜏 (𝐷) − 1

𝐵

∑𝐵
𝑏=1 𝜏 (𝐷

𝑏 ) which is
also used by [12], and the indirect estimator is 𝜃 (𝐷). The adaptive
indirect estimator is the only one not having significant bias.

Coverage Average width
𝜇 𝜎 𝜇 𝜎

PB (naïve percentile) 0.697 (0.015) 0.006 (0.002) 0.311 (0.001) 0.293 (0.001)
PB (simplified 𝑡 ) 0.869 (0.011) 0.817 (0.012) 0.311 (0.001) 0.293 (0.001)
PB [12] 0.808 (0.012) 0.371 (0.015) 0.311 (0.001) 0.293 (0.001)
PB (Efron’s BC) 0.854 (0.011) 0.042 (0.006) 0.298 (0.001) 0.139 (0.002)
PB (automatic percentile) 0.865 (0.011) 0.126 (0.010) 0.314 (0.001) 0.261 (0.001)
PB (adaptive indirect) 0.949 (0.007) 0.931 (0.008) 0.457 (0.003) 0.574 (0.003)
Repro [2] 0.989 (0.003) 0.998 (0.001) 0.599 (0.003) 0.758 (0.005)

Table 2: Results of the 95% CI for the inference of population
mean 𝜇 and standard deviation 𝜎 in a normal distribution.
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Figure 3: Comparison of the rejection probability on𝐻0 : 𝛽∗1 =

0 and 𝐻1 : 𝛽∗1 ≠ 0 for 𝑌 = 𝛽∗0 + 𝑋𝛽∗1 + 𝜖 (significance level 0.05.)

5.2 HT for parameters in linear regression

We follow the experiment setting in [1]. Let the true model be
𝑌 = 𝛽∗0 + 𝑋𝛽∗1 + 𝜖 where 𝛽

∗
0 = −0.5, 𝑋 ∼ 𝑁 (0.5, 1), 𝜀 ∼ 𝑁 (0, 0.25).

In Figure 3, we show the rejection probability of different methods
that are 1-GDP for HTs on 𝐻0 : 𝛽∗1 = 0 and 𝐻1 : 𝛽∗1 ≠ 0 under
various settings of the parameter of interest, 𝛽∗1 , and sample size, 𝑛.

The results in the first subfigure of Figure 3 are from the method
in [1] which uses Gaussian mechanism to obtain privatized suffi-
cient statistics for PB and the 𝐹 -statistic in the HT. There are two
problems with the results in this subfigure: 1) The type I error, i.e.,
the first row in the subfigures, is sometimes larger than the signifi-
cance level 0.05; 2) The rejection probability is not always larger
for larger 𝛽∗1 . The first problem is caused by the bias in the naïve
estimator from the privatized sufficient statistics, and the second
problem may be due to the inefficiency of the 𝐹 -statistic. For the
results in the second subfigure, we replace the naïve estimator with
the private adaptive indirect estimator in PB which solves the first
problem. Furthermore, we construct an approximate pivot using
the adaptive indirect estimator and its asymptotic distribution in
Theorem 4.7, and the results are in the third subfigure where both
problems are perfectly solved.

6 CONCLUSION

We propose a novel debiased estimator, the adaptive indirect esti-
mator, used in parametric bootstrap for consistent private statistical
inference, which solves the issue of clamping in DP mechanisms
affecting statistical inference in a flexible and general way. Our
estimator is based on the indirect estimator [13] where the classic
indirect inference uses the asymptotic normality of the parameter
estimation while we use parametric bootstrap instead to address
the new challenge coming from the DP mechanisms.

One direction of future work is the analysis of using a combi-
nation of the indirect estimator and other debiased estimators in
parametric bootstrap. Another direction is finding a more efficient
statistic 𝛽𝑛 used in the indirect estimator under various DP settings.
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