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Abstract

When applying differential privacy to sensitive data, a common way of getting improved
performance is to use external information such as other sensitive data, public data, or human
priors. We propose to use the algorithms with predictions (a.k.a. learning-augmented algorithms)
framework—previously applied largely to improve time complexity or competitive ratios—as
a powerful way of designing and analyzing privacy-preserving methods that can take advantage
of such external information to improve utility. For three important tasks—(multiple) quantile
release, covariance estimation, and data release—we construct prediction-dependent differentially
private methods whose utility scales with natural measures of prediction quality. Our analysis
enjoys several advantages, including minimal assumptions about the data, a natural way of adding
robustness, and the provision of useful surrogate losses for two novel “meta” algorithms that learn
predictions from other (potentially sensitive) data. We conclude with experiments in a diverse set
of multi-dataset quantile release settings that demonstrate how a learning-augmented approach
to incorporating external information can lead to large error reductions while preserving privacy.

1 Introduction

The differentially private (DP) release of statistics about a sensitive dataset x P Rn is an inevitably
error-prone task because we are by definition precluded from revealing exact information about
the instance at hand [31]. However, DP instances rarely occur in a vacuum: even in the simplest
practical settings, we usually know basic information such as the fact that all individuals have a
nonnegative age. Often, the dataset we are considering is drawn from a similar population as a
public dataset x1 P RN and should thus have similar statistics, a case known as the public-private
setting [11, 53]. Alternatively, in what we call sequential release, we aim to release information about
each of a sequence of datasets x1, . . . ,xT one-by-one. These could be generated by a stationary or
other process that allows information derived from prior releases to inform predictions of future
releases. In all of these settings, we might hope to incorporate external information to reduce error,
but approaches for doing so tend to be ad hoc and assumption-heavy.

We propose that the framework of algorithms with predictions [59]—provides the right tools for
deriving DP algorithms in this setting, and instantiate this idea for multiple quantile release1 [33, 42],
covariance estimation [4, 12, 27], and data release [36, 53]. Algorithms with predictions is an ex-
panding field of algorithm design that constructs methods whose instance-dependent performance
improves with the accuracy of some prediction about the instance. The goal is to bound the cost
Cxpwq of running on instance x given a prediction w by some metric Uxpwq of the quality of the
prediction on that instance. Motivated by practical success [48, 54] and as a type of beyond-worst-
case analysis [64], such algorithms can target a wide variety of cost measures, e.g. competitive ratios
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1Part of this work is in the proceedings of the 40th International Conference on Machine Learning (ICML 2023) [45].
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in online algorithms [5, 9, 20, 24, 30, 38, 40, 49, 56, 63, 71], space complexity in streaming algo-
rithms [28], and time complexity in graph algorithms [19, 26, 65] and distributed systems [50, 52, 66].
Departing from such work, we instead aim to design learning-augmented algorithms whose cost
Cxpwq captures the error of some statistic—e.g. quantiles—computed privately on instance an x
given a prediction w. We are interested in bounding this cost in terms of the quality of the external
information provided to our algorithm, which we denote by Uxpwq.

While incorporating external information into DP is well-studied, c.f. public-private methods [11,
53] and private posterior inference [25, 32, 67], by deriving and analyzing a learning-augmented
algorithm for multiple quantiles we show numerous comparative advantages, including:

1. Minimal data assumptions, sometimes even fewer than needed by the unaugmented baseline.

2. Existing tools for studying the robustness of algorithms to noisy predictions [56].

3. Co-design of algorithms with predictions with methods for learning those predictions from
data [44], which we show is crucial for both the public-private and sequential release settings.

We derive learning-augmented extensions of the state-of-the-art ApproximateQuantiles (AQ)
method [42] for quantile release and of the covariance estimation algorithms SeparateCov [27]
and IterativeEigenvectorSampling [4]; for data release we show how our framework applies to
MWEM [36], for which using a non-uniform (i.e. prediction-based) prior has been studied in past
work [53]. In all cases our instance-dependent guarantees (nearly) match past worst-case bounds
while being much better if a natural measure Uxpwq of prediction quality is small. We also show
how these algorithms can be made robust to poor predictions w and how they can be efficiently
and privately learned by optimizing Ux across related datasets x. In addition, our analysis yields
several contributions of independent interest for differential privacy:

1. The first robust algorithm for (single or multiple) private quantile release that avoids assuming
the data is bounded on some interval, specifically by using a heavy-tailed prior.

2. Prediction-free trace-sensitive guarantees for SeparateCov (for both the pure and zCDP ver-
sions) that strictly improve upon the original bounds of Dong et al. [27] for the same algorithm.

3. A non-Euclidean extension of DP-FTRL [41] that is the first DP online convex optimization
method that can be easily customized to obtain better regret guarantees on different geometries.

Finally, we conclude with an empirical study where we use our framework to design algorithms to
reduce the error of private quantile release in both the public-private and sequential release settings
described above. Our technical approach takes advantage of a novel connection between DP quantiles
and censored regression to obtain both guarantees and practical algorithms. The experimental results
highlight the effectiveness of our framework for ensuring robust performance in the face of noisy pre-
dictions and for designing surrogate loss functions that can be optimized to yield useful predictions.2

2 Problem formulation

The basic requirement for a learning-augmented algorithm is that the cost Cxpwq of running it on
an instance x with prediction w should be upper bounded—usually up to constant or logarithmic
factors—by a metric Uxpwq of the quality of the prediction on the instance. We denote this by
Cx À Ux. In our work the cost Cxpwq will be the error of a privately released statistic, as compared
to some ground truth. We will use the following privacy notion:

2Code to reproduce our results is available at https://github.com/mkhodak/private-quantiles.

2

https://github.com/mkhodak/private-quantiles


Definition 2.1 ([31]). Algorithm A is pε, δq-differentially private if for all subsets S of its range,
PrtApxq P Su ď eε PrtApx̃q P Su ` δ whenever x „ x̃ are neighboring datasets.

Using ε-DP to denote pε, 0q-DP, the broad goal of this work will be to reduce the error Cxpwq
of ε-DP multiple quantile release while fixing the privacy level ε. For easier comparison to past
prediction-free results, we will define neighboring datasets differently depending on the application;
specifically, for quantile release we use add-remove privacy, where x can be obtained from x̃ by
adding or removing an entry, while for covariance estimation and data release we use swap privacy,
in which x can be obtained from x̃ by replacing one entry with another.

A good guarantee for a learning-augmented algorithm will have several important properties
that formally separate its performance from naive upper bounds Ux Á Cx. The first, consistency,
requires it to be a reasonable indicator of strong performance in the limit of perfect prediction:

Definition 2.2. A guarantee Cx À Ux is cx-consistent if Cxpwq ď cx whenever Uxpwq “ 0.

Here cx is a prediction-independent quantity that should depend weakly or not at all on problem
difficulty (in the case of quantiles, the minimum separation between data points). Consistency is
often presented via a tradeoff with robustness [56], which bounds how poorly the method can do
when the prediction is bad, in a manner similar to a standard worst-case bound:

Definition 2.3. A guarantee Cx À Ux is rx-robust if it implies Cxpwq ď rx for all predictions w.

Unlike consistency, robustness usually depends strongly on the difficulty of the instance x, with
the goal being to not do much worse than a prediction-free approach. Note that the latter is trivially
robust but not (meaningfully) consistent, since it ignores the prediction; this makes clear the need
for considering the two properties via a tradeoff between them. As discussed further in Section 5,
this existing language for quantifying robustness is one of the advantages of using the framework
of learning-augmented algorithms for incorporating external information into DP methods.

A last desirable property of the prediction quality measure Uxpwq is that it should be useful for
making good predictions. One way to formalize this is to require Uxt to be learnable from multiple
instances xt. For example, we could ask for online learnability, i.e. the existence of an algorithm whose
predictions wt PW in some action space W given instances x1, . . . ,xt´1 yield regret sublinear in T :

Definition 2.4. The regret of actions twt PW u
T
t“1 on losses tUxtu

T
t“1 is max

wPW

T
ř

t“1
Uxtpwtq´Uxtpwq.

Sublinear regret implies average prediction quality as good as that of the optimal prediction in
hindsight, up to an additive term that vanishes as T Ñ8. Since Uxt roughly upper-bounds the error
Cxt , this means that asymptotically the average error is governed by the average prediction quality
minwPW

1
T

řT
t“1 Uxtpwq of the optimal w PW . A crucial observation here is that sublinear regret

can often be obtained by making the function Ux amenable to familiar gradient-based online convex
optimization methods such as online gradient descent [44]. Doing so also enables instance-dependent
linear prediction: setting wt using a learned function of some instance features ft. In Section 6
we apply our non-Euclidean extension of DP-FTRL (c.f. Theorem 6.1) to show online and PAC
learnability of the prediction quality measures Ux for all three DP tasks we consider.

The usefulness of both the learning-theoretic and robustness-consistency analysis is demonstrated
in Section 7 on two applications where it is reasonable to have external information about the
sensitive dataset(s). In the public-private setting, the prediction w is obtained from a public
dataset x1 that is assumed to be similar to x but is not subject to privacy-protection. In sequential
release, we privately release information about each dataset in a sequence x1, . . . ,xT ; the release
at time t can depend on xt and on a prediction wt, which can be derived (privately) from past
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observations. We show that sequential release can be posed directly as a private online learning
problem, while the public-private setting can be approached via online-to-batch conversion [17].
Both can thus be solved by treating the prediction quality measures Uxt as surrogate objectives
for the actual cost functions Cx and applying standard optimization techniques [44].

3 Overview of theoretical results

We now summarize the main results for the three tasks we consider, focusing on the prediction-
dependent performance bounds Ux Á Cx that we show for our learning-augmented private algorithms.
These will be stated more formally in Section 4. We also highlight the utility of these results in ensur-
ing robustness and enabling learning, which will be further detailed in Sections 5 and 6, respectively.

3.1 Related work

There has been significant work on incorporating external information to improve DP methods. A
major line of work is the public-private framework, where we have access to public data that is related
in some way to the private data [3, 10, 11, 51, 53]. The use of public data can be viewed as using a
prediction, but such work starts by making (often strong) distributional assumptions on the public
and private data; we instead derive instance-dependent upper bounds with minimal assumptions
that we then apply to such public-private settings. Furthermore, our framework allows us to ensure
robustness to poor predictions without distributional assumptions, and to derive learning algorithms
using training data that may itself be sensitive. Another approach is to treat DP mechanisms
(e.g. the exponential) as Bayesian posterior sampling [25, 32, 67]. Our work can be viewed as
an adaptation where we give explicit prior-dependent utility bounds. To our knowledge, no such
guarantees exist in the literature. Moreover, our approach does not necessitate specifying the external
information in the form of (explicit) priors, e.g. for covariance estimation we use matrix predictions.

Our approach for augmenting DP with external information centers the algorithms with pre-
dictions framework, where past work has focused on using predictions to improve metrics related to
time, space, and communication complexity. We make use of existing techniques from this literature,
including robustness-consistency tradeoffs [56] and the online learning of predictions [44]. Tuning
DP algorithms has been an important topic in private machine learning, e.g. for hyperparameter
tuning [18] and federated learning [6], but these have not to our knowledge considered incorporating
per-instance predictions.

3.2 Preliminaries

We use rns to denote the sequence
`

1, ¨ ¨ ¨ , n
˘

, xris to denote the ith element of a vector x, and Xri,js to
denote the jth element of the ith row of a matrix X. For both vectors and matrices we will use }¨}p to
denote the entry-wise p-norm, and for the latter we will use ~¨~p to denote the Schatten p-norm; thus
}¨}2 “ }¨}F is the Frobenius norm, ~¨~8 is the spectral norm, and ~¨~1 “ }¨}Tr is the trace or nuclear
norm. We will use } ¨ }˚ to refer to the dual norm of } ¨ }, and for any dataset X we use |X| to denote
the number of entries. We use 0d and 1d to denote the d-dimensional all-zero and all one vectors, 1S
to denote the indicator on set S, x „ Lappbq to denote sampling a Laplace r.v. with mean zero and
scale b, x „ N p0d, σ2q to denote sampling a Gaussian vector with mean 0d and covariance σ2Id, and
4d to denote the simplex on d elements. For simplicity, for any probability measure µ : pa, bq ÞÑ Rě0

we use µpIq “
ş

I µpoqdo to denote the probability it assigns to any interval I Ă pa, bq. Unless

otherwise specified, Õ will be used to ignore logarithmic factors in standard asymptotic notation.
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3.3 Multiple quantile release

In the quantile problem, given a quantile q and a sorted dataset x P Rn of n distinct points, the
goal is to release a number o that upper bounds exactly tqnu of the entries. The error metric,
Gapqpx, oq, is the number of entries between the released number o and tqnu. A straightforward
application of the well-known exponential mechanism [58] with utility ´Gapq outputs o that

satisfies Gapqpx, oq ď
2
ε log 1

βΨ
pqq
x

w.p. ě 1 ´ β, where Ψ
pqq
x is the probability µppxrtqnus,xrtqnu`1ssq

that the prior assigns to the optimal interval. We thus use U
pqq
x pµq “ ´ log Ψ

pqq
x as our measure of

prediction quality in the single-quantile setting, which allows us to recover standard guarantees that
assume x P pa, bqn is bounded and set µ to be the uniform measure on pa, bq. As our first major
contribution, we show by studying Ux how to dispense with this assumption by instead using the
Cauchy distribution with location a`b

2 and scale b´a
2 . If the boundedness assumption holds then the

resulting mechanism has nearly the same bound on Gapq as the uniform measure, up to an additive
2
ε log π factor, but if does not—e.g. if all points xris in the dataset are a distance R ą b´a

2 away

from a`b
2 —then we still have the guarantee Gapq “ Õp

logR
ε q w.h.p. (c.f. Corollary 4.1). In contrast,

the error of the released quantile when using the uniform measure in the latter scenario is Ωpnq a.s.
The main technical challenge is then to extend the single-quantile guarantee to the case where

we must estimate m ą 1 quantiles q1, . . . , qm P p0, 1q while making use of m priors µ1, . . . , µm. In
particular, we want a guarantee on the maximum gap that encodes how useful each prior µi is for its
quantile qi and that grows sublinearly in m, ideally recovering the maxi Gapqi “ Op

polylogpmq
ε q bound

of Kaplan et al. [42] in the prediction-free limit. Although it requires several major modifications to
AQ, we are able to nearly achieve this goal, devising a method (c.f. Algorithm 5) that guarantees a

bound of Õp rpmqε log
řm
i“1 e

U
pqiq
x pµiqq on the maximum gap w.h.p. (c.f. Theorem 4.3), where rpmq is

sub-polynomial but super-polylogarithmic in m. This yields a quality measure Ux for µ1, . . . , µm that

aggregates the single-quantile measures U
pqiq
x pµiq via their log-sum-exp, a convenient form that allows

us to easily extend single-quantile robustness and learning-theoretic results to multiple quantiles.
Our quantile results exemplify the advantages of our approach to incorporating external infor-

mation into DP algorithms that we discussed in the introduction: minimal assumptions, robustness-
consistency tradeoffs, and learning. In-fact, the first outcome of our analysis was removing a bound-
edness assumption. This contrasts with past public-private work [11, 53], which makes distributional
assumptions, and is why we can obtain guarantees in two very distinct settings in Section 7. We next
highlight how our results imply convenient robustness-consistency tradeoffs and efficient learnability.

3.3.1 Robustness

Using the formalization of robustness and consistency in Definitions 2.2 and 2.3, algorithms with
predictions provides a convenient way to deploy them by parameterizing the robustness-consistency
tradeoff, in which methods are designed to be rxpλq-robust and cxpλq-consistent for a user-specified
parameter λ P r0, 1s [9, 56]. For quantiles, we can obtain an elegant parameterized tradeoff by
interpolating prediction priors with a “robust” prior. In particular, we can pick ρ to be a trusted prior
such as the uniform or Cauchy and for any prediction µ use µpλq “ p1´λqµ`λρ instead. Then since

Ψ
pqq
x is linear we have Ψ

pqq
x pµ

pλqq “ p1´ λqΨ
pqq
x pµq ` λΨ

pqq
x pρq, which implies the following guarantee:

Corollary 3.1 (of Lem. A.1; c.f. Cor. 5.1). For any quantile q P p0, 1q, applying EM with prior

µpλq “ p1´ λqµ` λρ is

ˆ

2
ε log 1{β

λΨ
pqq
x pρq

˙

-robust and
´

2
ε log 1{β

1´λ

¯

-consistent.
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Thus w.h.p. error is simultaneously at most 2
ε log 1

λ worse than that of only using the robust prior ρ

and we only have error 2
ε log 1{β

1´λ if the prediction µ is perfect, i.e. if it is only supported on the optimal
interval. This is easy to extend to the multiple-quantile metric Ux “ ´ log Ψx. In fact, we can even in-
terpolate between the polylogpmq prediction-free guarantee of past work and our learning-augmented
guarantee with the worse dependence on m (c.f. Corollary 5.2); thus if the prediction is not good
enough to overcome the worse rate we can still ensure that we do not do much worse than the original
guarantee. These results show the advantage of our framework in designing algorithms that make
robust use of possibly noisy predictions. Notably, related public-private work that studies robustness
still assumes source and target data are Gaussian [11], whereas we make no distributional assumptions.
We demonstrate the importance of our robustness techniques throughout the experiments in Section 7.

3.3.2 Learning

A last important use for prior-dependent bounds is as surrogate objectives for optimization. As we
show in Section 7, being able to learn across upper bounds Ux1 , . . . , UxT of a sequence of (possibly
sensitive) datasets xt is useful for both the public-private and sequential release. Algorithms with
predictions guarantees are often sufficiently nice to do this using off-the-shelf online learning [44], a

property that largely holds for our upper bounds as well. Most saliently, the bound U
pqq
x “´ log Ψ

pqq
x

is a convex function of an inner product Ψ
pqq
x between the EM score and the prior µ; thus by

discretizing one can learn over a large family of piecewise-constant priors, which themselves approx-
imate Lipschitz priors over a bounded domain. The same is true of the multiple quantile bound Ux

because it is the log-sum-exp over U
pqiq
x and thus also convex. We therefore can apply an entropic

variant of DP-FTRL to (privately) online learn the sequence Uxt with low-regret w.r.t. any set
of m Lipschitz priors (c.f. Theorem 6.2). However, in-practice we may not want to learn in the
high dimensions needed by the discretization, and rather than fixed priors we may wish to learn
a mapping from dataset-specific features.

Thus, in Section 7 we focus on the less-expressive family of location-scale models, which allows
us to develop algorithms that are amenable to both analysis and implementation. In particular,
we show that Ux has the same form as the negative log-likelihood of censored regression, which for
log-concave location-scale families is convex in a convenient reparameterization of the location and
scale [15, 62]. We can thus show DP online learning guarantees in the sequential release setting (c.f.
Theorem 7.3) and derive an algorithm for public-private transfer whose error is bounded by the
TV-distance between the order statistics of the public and private distributions (c.f. Theorem 7.2).

3.4 Covariance estimation

While encoding predictions via base measures of DP mechanisms is a natural starting point for
learning-augmented algorithms, it is not the only way of doing so. We can instead start with existing
algorithms whose errors have explicit or implicit dependence on some measure of complexity of the
data and use this to convert them into algorithms with predictions. The errors will then have an
(explicit) dependence on a related measure of the error between the data and a point (rather than
distributional) prediction, leading to highly interpretable bounds Uxpwq on the utility loss.

Our application to covariance estimation exemplifies this approach. For this task we take ad-
vantage of recent “trace-sensitive” results, which bound the Frobenius error between the covariance
matrix C “ XXT {n of a dataset X P Rdˆn by some function of its trace [4, 27]. Since the core
component of these algorithms is a DP estimate of a symmetric dˆd matrix, if we have a symmetric
prediction W P Rdˆd we can try to use the methods to instead privately estimate the error C´W
and then add W to the result; we can then hope to show that the error depends on the trace norm
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}C´W}Tr of the error rather than the trace of C. We achieve exactly this and more by extending
the analysis in this prior work to the negative spectrum, in order to handle the possibly negative
eigenvalues of C´W. The result below, for the learning-augmented extension of the state-of-the-art
SeparateCov algorithm [27], is characteristic of these results (c.f. Section 4.2):

Corollary 3.2 (of Thm. 4.4; c.f. Cor 4.2). If X P Rdˆn has columns bounded by 1 in `2-norm then
applying SeparateCov to C´W and obtaining Ĉ by adding W to the result is ε-DP and satisfies

}Ĉ´C}2F ď Õ
´

d
ε2n2 `

d
?
d

εn mincPR }C´W ´ cId}Tr

¯

w.h.p.

Notably, for W “ 0dˆd this bound improves upon the corresponding prediction-free result of Dong
et al. [27], who only show it for c “ 0. A simple setting where this improvement is tangible is when the
columns of X are drawn from a bounded distribution whose covariance is a scalar multiple of the iden-
tity, in which case w.h.p. mincPR }XXT {n´ cId}Tr ď Õpdmint1,

a

d{nuq but }XXT {n}Tr ě Õpdq;
therefore for constant ε the bound in Corollary 4.2 becomes Õpd2

n

a

mintd, d2{nuq whereas the bound

of Dong et al. [27, Lemma 19] is no better than Õpd2
?
d{nq. In particular, for d “ Op1q our bound is

asymptotically dominated by the error Õpd2

n q of (non-privately) estimating the population covariance.

3.4.1 Robustness

Because of its non-convexity, we drop the minimum over c P R for our robustness and learning-
theoretic analyses of covariance estimation, using the looser bound at c “ 0 to define our prediction
quality metric UXpWq “ }XXT {n´W}Tr. To ensure robustness, we take the approach of privately
checking if the quality UXpWq of the prediction W P Rdˆd is better than UXp0dˆdq, i.e. that of
the prediction-free approach. In doing so we pay for robustness by a factor of

?
d in the leading

(non-trace-sensitive) term, although as we discuss later this may be an artifact of the setting.

Corollary 3.3 (of Thm. 4.4; c.f. Cor. 4.2). Running SeparateCov with the prediction W only if
its trace distance }XXT {n´W}Tr is smaller than }XXT {n}Tr according to the Laplace mechanism

is Õ
´

d
?
d

εn

`

1
εn ` }XXT {n}Tr

˘

¯

-robust and Õ
´

d
?
d

ε2n2

¯

-consistent.

3.4.2 Learning

Similar to before, we can pose the problem of learning to release covariance estimates across multiple
datasets as the online learning problem of obtaining low regret w.r.t. any matrix W P Rdˆd for the
functions UXtpWq “ }XtX

T
t {nt ´W}Tr determined by the sequence of datasets tXt P RdˆntuTt“1.

We apply DP-FTRL with with a Schatten p-norm regularizer, which applies p-norm regularization to
the spectrum of the matrix [29]; this yields a Op

?
dq-improvement in the regret—and a corresponding

Opdq-improvement in sample complexity—over regular DP-FTRL, highlighting the usefulness of
our non-Euclidean analysis.

Theorem 3.1 (c.f. Thm. 6.3). There exists an pε1, δ1q-DP online learner whose regret w.r.t. all

symmetric W P Rdˆd is bounded w.h.p. by Õ
´

a

p1` d{ε1qT
¯

. Furthermore, if the datasets Xt are

all drawn i.i.d. from the same distribution and we set Ŵ “ 1
T

řT
t“1 Wt to be the average iterate

then T “ Ω̃
´

1`d{ε1

α2

¯

samples suffice to ensure that w.h.p. its excess risk is at most α.
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3.5 Data release

In our last application we study private data release, where we seek to construct a synthetic dataset
x̂ P Rdě0 using sensitive data x P Zdě0 such that the maximum error of a finite set Q of linear queries
q P r´1, 1sd is bounded. To do so we use the well-known MWEM method of [36], which has an implicit
dependence on the KL-divergence DKLpx{n||1d{dq between the data distribution and the uniform
distribution it uses to initialize its iterative approach; by instead initializing with a prediction
w P 4d in the d-dimensional simplex one can instead obtain a dependence on DKLpx{n||wq:

Lemma 3.1 (c.f. Lem. 4.2). Initializing MWEM with w P 4d and running it for m iterations on
dataset x is ε-DP and w.p. ě 1´ β produces a synthetic dataset s.t. the largest mean squared error

of any linear query in Q is bounded by O
´

n
mDKLp

x
n ||wq `

m2

ε2n
log2 m

β log4 |Q|
¯

, where n “ }x}1.

As in quantile release, for this task we can again ensure robustness via an interpolation-based ap-
proach, although here we are mixing finite-dimensional vectors rather than probability distributions.

Note that using the uniform prior guarantees Õ
ˆ

3

b

n log2 d
ε2

˙

error, so since the data-dimension d

can be very large in this application, if we use small enough λ we can obtain a strong advantage
under perfect predictions while ensuring performance similar to the prediction-free guarantee.

Corollary 3.4 (of Lem. 4.2; c.f. Cor. 5.4). There exists a fixed number of iterations s.t. using

wpλq “ p1´ λqw` λ1d{d instead of the prediction w P 4d to initialize MWEM is Õ
ˆ

3

b

n
ε2 log d

log d
λ

˙

-

robust, and Õ
ˆ

λ 3

b

n log2 d
ε2

˙

-consistent, where n is the number of records.

The observation that MWEM can be initialized non-uniformly is not novel, having been used
by both the original authors and by subsequent public-private work [53]. However, our learning-
theoretic analysis reveals interesting aspects that this prior work does not consider as closely,
such as how the optimal choice for other parameters of the algorithm are influenced by the
prediction quality. In-particular, when online learning the sequence of prediction quality measures
Uxtpwq »

nt
mDKLpxt{nt||wq `

m2

ε2nt
that bound the error of data release—here nt is the number

of examples in xt and m is the number of iterations—we note that the optimal setting of m
depends on the similarity between instances: if minw

řT
t“1 ntDKLpxt{nt||wq, i.e. the entropy of

the average distribution
´

řT
t“1 xt

¯

{
řT
t“1 nt, is small then we can take advantage of this by taking

fewer iterations. However, we do not know this entropy a priori, so we can instead adapt to it by
competing with the best step-size—which will encode the unknown entropy—by simultaneously
running online learners both for w and for m, with the optimization domain of the latter being the
m-simplex 4m. We again apply entropic DP-FTRL to get the following guarantee:

Theorem 3.2 (c.f. Thm. 6.4). There exists an pε1, δ1q-DP algorithm that adaptively sets the initial-
izations wt P 4d and number of iterations mt ą 0 s.t. the regret w.r.t. the optimal (initialization,

iteration) pair pw,mq is Õ
ˆ

dN
4
3

λmint1,ε2u

a

T {ε1
˙

, where N “ maxt nt is the maximum number of

entries in any dataset xt.
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3.6 Discussion

This concludes our overview of our theoretical results, where we highlight multiple ways of incor-
porating predictions—as priors in DP mechanisms, as offsets to be corrected using sensitive data,
or as initializations for iterative methods—as well as two ways of making the methods robust to
noisy predictions: (1) interpolating with a default prediction and (2) privately checking whether
the quality of the default prediction is better. We also illustrate how learning-augmented analysis
can yield new insights in the prediction-free setting, as demonstrated by our results for unbounded
quantile release and trace-sensitive covariance estimation. Next we will go into further detail about
these prediction-dependent guarantees, robustness-consistency tradeoffs, and learning-theoretic
results in Sections 4, 5, and 6, respectively. Then in Section 7 we will present a theoretical and
empirical investigation of of how to use predictions to improve multiple quantile release in both
the public-private and sequential release settings.

4 Prediction-dependent utility bounds

As formulated in Section 2, the basic guarantee of learning-augmented private algorithm is an
upper bound Uxpwq on the error Cxpwq of the statistic it releases about a dataset x when using a
prediction w. We now demonstrate how to design methods for different DP tasks that enjoy such
guarantees. While for single quantile release and data release we take the straightforward approach
of incorporating a prediction-dependent prior into the EM mechanism, we also show how to handle
difficulties that arise when multiple mechanisms need to be combined for releasing multiple quantiles
and how to incorporate matrix predictions instead of explicit distributional priors by estimating the
additive error between true and predicted covariances. This section also discusses DP contributions
of independent interest that arise from our study of measures of prediction quality, specifically our
Cauchy-based approach for releasing quantiles without assuming boundedness (Corollary 4.1) and
our improved bounds for the SeparateCov algorithm proposed by Dong et al. [27] (Corollary 4.2).

4.1 Quantile estimation via prediction-dependent priors

Given a quantile q P p0, 1q and a sorted dataset x P Rn of n distinct points, we want to release
o P rxrtqnus,xrtqnu`1sq, i.e. such that the proportion of entries less than o is q. As in prior work [42],
the error of o will be the number of points between it and the desired interval:

Gapqpx, oq “ ||ti : xris ă ou| ´ tqnu| “ | max
xrisăo

i´ tqnu| (1)

Gapqpx, oq is constant on intervals Ik “ pxrks,xrk`1ss in the partition by x of R (let I0 “ p´8,xr1ss
and In “ pxrns,8q), so we also say that Gapqpx, Ikq is the same as Gapqpx, oq for some o in the
interior of Ik.

4.1.1 Warm-up: releasing one quantile

For single quantile release we choose perhaps the most natural way of specifying a prediction for
a DP algorithm: via the base measure µ : R ÞÑ Rě0 of the exponential mechanism:

Theorem 4.1 ([58]). If the utility upx, oq of an outcome o of a query over dataset x has sensi-
tivity maxo,x„x̃ |upx, oq ´ upx̃, oq| ď ∆ then the exponential mechanism, which releases o w.p.
9 expp ε

2∆upx, oqqµpoq for some base measure µ, is ε-DP.

9



The utility function we use is uq “ ´Gapq, so since this is constant on each interval Ik the
mechanism here is equivalent to sampling k w.p. 9 exppεuqpx, Ikq{2qµpIkq and then sampling o
from Ik w.p. 9µpoq. While the idea of specifying a prior for EM is well-known, the key idea here is
to obtain a prediction-dependent bound on the error that reveals a useful measure of the quality of
the prediction. In particular, we can show (c.f. Lemma A.1) that running EM in this way yields o
that w.p. ě 1´ β satisfies

Gapqpx, oq ď
2

ε
log

1{β

Ψ
pq,εq
x pµq

ď
2

ε
log

1{β

Ψ
pqq
x pµq

(2)

where the quantity Ψ
pq,εq
x “

ş

expp´ ε
2 Gapqpx, oqqµpoqdo is the inner product between the prior and

the EM score while Ψ
pqq
x “ limεÑ8Ψ

pq,εq
x “ µppxrtqnus,xrtqnu`1ssq is the probability that the prior

assigns to the optimal interval.

This suggests two metrics of prediction quality: the negative log-inner-products U
pq,εq
x pµq “

´ log Ψ
pq,εq
x pµq and U

pqq
x pµq “ ´ log Ψ

pqq
x pµq. Both make intuitive sense: we expect predictions µ

that assign a high probability to intervals that the EM score weighs heavily to perform well, and
EM assigns the most weight to the optimal interval. There are also many ways that these metrics
are useful. For one, in the case of perfect prediction—i.e. if µ assigns probability one to the optimal

interval Itqnu—then Ψ
pq,εq
x pµq “ Ψ

pqq
x pµq “ 1, yielding an upper bound on the error of only 2

ε log 1
β .

Secondly, as we will see, both are also amenable for analyzing robustness (the mechanism’s sensitivity
to incorrect priors) and learning. A final and important quality is that the guarantees using these
metrics hold under no extra assumptions. Between the two, the first metric provides a tighter bound
on the utility loss while the second does not depend on ε, which may be desirable.

It is also fruitful to analyze the metrics for specific priors. When x is in a bounded interval pa, bq

and µpoq “
1oPpa,bq
b´a is the uniform measure, then Ψ

pqq
x pµq ě

ψx

b´a , where ψx is the minimum distance be-
tween entries; thus we recover past bounds, e.g. [42, Lemma A.1], that implicitly use this measure to
guarantee Gapqpx, oq ď

2
ε log b´a

βψx
. Here the support of the uniform distribution is correct by assump-

tion as the data is assumed bounded. However, analyzing Ψ
pqq
x also yields a novel way of removing

this assumption: if we suspect the data lies in pa, bq, we set µ to be the Cauchy prior with location
a`b

2 and scale b´a
2 . Even if we are wrong about the interval, there exists an R ą 0 s.t. the data lies in

the interval pa`b2 ˘Rq, so using the Cauchy yields Ψ
pqq
x ě

2pb´aqψx{π
pb´aq2`4R2 and thus the following guarantee:

Corollary 4.1 (of Lem. A.1). If the data lies in the interval pa`b2 ˘ Rq and µ is the Cauchy

measure with location a`b
2 and scale b´a

2 then the output of the exponential mechanism satisfies

Gapqpx, oq ď
2
ε log

ˆ

π
b´a` 4R2

b´a

2βψx

˙

w.p. ě 1´ β.

If R “ b´a
2 , i.e. we get the interval right, then the bound is only an additive factor 2

ε log π worse
than before, but if we are wrong then performance degrades as Oplogp1` R2qq, unlike the OpRq
error of the uniform prior. Note our use of a heavy-tailed distribution here: a sub-exponential
density decays too quickly and leads to error OpRq rather than Oplogp1`R2qq. We can also adapt
this technique if we know only a single-sided bound, e.g. if values must be positive, by using an
appropriate half-Cauchy distribution.
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4.1.2 Releasing multiple quantiles

To simultaneously estimate quantiles q1, . . . , qm we adapt the ApproximateQuantiles method of
Kaplan et al. [42], which assigns each qi to a node in a binary tree and, starting from the root,
uses EM with the uniform prior to estimate a quantile before sending the data below the outcome
o to its left child and the data above o to its right child. Thus each entry is only involved in
rlog2ms exponential mechanisms, and so for data in pa, bq the maximum Gapqi across quantiles is

O
´

log2 m
ε log mpb´aq

βψx

¯

, which is much better than the naive bound of a linear function of m.

Given one prior µi for each qi, a naive extension of (2) gets a similar polylogpmq bound (c.f.
Lem A.2); notably we extend the Cauchy-unboundedness result to multiple quantiles (c.f. Cor. A.1).
However the upper bound is not a deterministic function of µi, as it depends on restrictions of x
and µi to subsets poj , okq of the domain induced by the outcomes of EM for quantiles qj and qk
earlier in the tree. It thus does not encode a direct relationship between the prediction and instance
data and is less amenable for learning.

We instead want guarantees depending on a more natural metric, e.g. one aggregating Ψ
pqi,εiq
x pµiq

from the previous section across pairs pqi, µiq. The core issue is that the data splitting makes the
probability assigned by a prior µi to data outside the interval poj , okq induced by the outcomes of
quantiles qj and qk earlier in the tree not affect the distribution of oi. One way to handle this is
to assign this probability mass to the edges of poj , okq, rather than the more natural conditional
approach of ApproximateQuantiles. We refer to this as “edge-based prior adaptation” and use it

to bound Gapmax “ maxi Gapqipx, oiq via the harmonic mean Ψ
pεq
x of the inner products Ψ

pqi,εiq
x pµiq:

Theorem 4.2 (c.f. Thm. A.1). If m “ 2k´ 1 for some k, quantiles q1, . . . , qm are uniformly spaced,
and for each we have a prior µi : R ÞÑ Rě0, then running ApproximateQuantiles with edge-based
prior adaptation (c.f. Algorithm 5) is ε-DP, and w.p. ě 1´ β

Gapmax ď
2

ε
φlog2pm`1qrlog2pm` 1qs log

m{β

Ψ
pεq
x

for Ψ
pεq
x “

˜

m
ÿ

i“1

1{m

Ψ
pqi,εiq
x pµiq

¸´1

(3)

Here εi “
ε

rlog2pm`1qs and φ “ 1`
?

5
2 is the golden ratio.

The golden ratio is due to a Fibonacci-type recurrence bounding the maximum Gapqi at each

depth of the tree. Ψ
pεq
x depends only on x and predictions µi, and it yields a nice error metric

U
pεq
x “ ´ log Ψ

pεq
x “ log

řm
i“1 e

U
pqi,εiq
x . However, the dependence of the error on m is worse than that

of ApproximateQuantiles, as φlog2m is roughly Opm0.7q, although the bound is still sublinear and
thus better than the naive baseline of running EM m times. Note that, as in the single-quantile
case, we can construct a looser but ε-independent upper bound

Ux “ ´ log Ψx “ log
m
ÿ

i“1

eU
pqiq
x ě U

pεq
x (4)

using the harmonic mean Ψx of Ψ
pqiq
x . We will make heavy use of this prediction quality measure

as a surrogate loss function in applications (c.f. Section 7).
The Õpφlog2mq dependence on the number of quantiles m in Theorem 4.2 results from error

compounding across depths of the tree, so we can try to reduce depth by going from a binary to
a K-ary tree. This involves running EM K ´ 1 times at each node—and paying K ´ 1 more in
budget—to split the data into K subsets; the resulting estimates may also be out of order. However,
by showing that sorting them back into order does not increase the error and then controlling the
maximum Gapqi at each depth via another recurrence relation, we prove the following:
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Figure 1: Maximum gap as a function of m for different variants of AQ when using the Uniform
prior, evaluated on 1000 samples from a standard Gaussian (left) and the Adult “age” dataset
(right). The dashed and solid lines correspond to ε “ 1 and 0.1, respectively.

Theorem 4.3 (c.f. Thm. A.2). For any q1, . . . , qm, using K “ rexpp
a

log 2 logpm` 1qqs and
edge-based adaptation guarantees ε-DP and w.p. ě 1´ β has

Gapmax ď
2π2

ε
exp

´

2
a

logp2q logpm` 1q
¯

log
m{β

Ψ
pεq
x

(5)

The rate in m is both sub-polynomial and super-poly-logarithmic (opmαq and ωplogαmq @ α ą 0);
while asymptotically worse than the prediction-free original result [42], for almost any practical
value of m (e.g. m P r3, 1012s) it does not exceed a small constant (e.g. nine) times log3m. Thus

if the error ´ log Ψ
pεq
x of the prediction is small—i.e. the inner products between priors and EM

scores are large on (harmonic) average—then we may do much better with this approach.
We compare K-ary AQ with edge-based adaptation to regular AQ in Figure 1. The original is

better at higher ε but similar or worse at higher privacy. We also find that conditional adaptation is
only better on discretized data with repetitions, where neither method provides guarantees. Overall,
we find that our prior-dependent analysis covers a useful algorithm, but for consistency with past work
and due to its better performance at high ε we focus on the original binary approach in experiments.

4.2 Covariance estimation by estimating the prediction error

Encoding predictions as priors for EM and other mechanisms is a natural starting point for integrating
external information into DP algorithms, but one might also wish to use a point prediction directly
and hope to perform well if some distance measure between it and the output is small. While this is a
less natural requirement for quantile release, where errors are measured using data points rather than
metrics over the domain they live in, we show how this is easily achievable for the important problem
of covariance estimation. In this setting we have a dataset X P Rdˆn, where each of n records is a
d-dimensional column with `2-norm bounded by 1, and we want to privately release an approximation
Ĉ of its covariance matrix C “ XXT {n such that the Frobenius distance between the two is small.

Given a prediction W P Rdˆd of C, one can immediately construct the trivial, private, prediction-
sensitive algorithm of just releasing W, which has the obvious prediction-dependent performance
guarantee of }W ´C}F . However, we can hope to use the data to get an error that both decreases
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Algorithm 1: SeparateCov with predictions

Input: data X P Rdˆn, symmetric prediction matrix W P Rdˆd, privacy parameter ε ą 0
UΛUT Ð XXT {n´W
Λ̂ Ð Λ` diagpzq where zris „ Lap

`

4
εn

˘

// add noise to prediction error eigenvalues

C̃ Ð XXT {n` Z for Zri,js “ Zrj,is „ Lap
´

2d
?

2
εn

¯

ŨΛ̃ŨT Ð C̃´W // get eigenvectors of noised prediction error

Output: Ĉ “ ŨΛ̂ŨT `W // combine to estimate XXT {n´W, then add W

with n and is small if some distance between the prediction and ground truth is small. To do so, we
make use of recent approaches that enjoy trace-sensitive guarantees, i.e. their utility improves if
TrpXXT q is small [4, 27]; for example, the state-of-the-art method SeparateCov returns Ĉ that is

ε-DP and satisfies }Ĉ ´C}2F “ Õp
d

ε2n2 `
d
?
d

εn TrpXXT {nqq w.h.p. [27, Lemma 18]. This suggests
a natural way to incorporate a symmetric prediction matrix W: use the existing algorithm to
privately estimate its difference C´W with the ground truth, and then add W to the result; since
C´W is no longer PSD, the hope would be to obtain error that scales with its trace norm.

We do exactly this in Algorithm 1, which uses the SeparateCov approach of separately estimating
and combining eigenvalues and eigenvectors but applies it to C´W. The one potential issue is
showing that their main error bound holds for symmetric matrices with negative eigenvalues, but this
follows in Lemma 4.1 by applying their argument to both sides of the spectrum (c.f. Appendix B.1.2):

Lemma 4.1. For X P Rdˆn and symmetric W P Rdˆd, if ŨΛ̃ŨT “ XXT {n ´W ` Z for some
symmetric Z P Rdˆd and Λ̂ “ Λ` diagpzq for UΛUT “ XXT {n´W and some vector z P Rd then

}ŨΛ̂ŨT `W ´XXT {n}2F ď 4
`

}z}22 ` ~Z~8}XXT {n´W}Tr

˘

(6)

Our performance-dependent guarantee then follows via Laplace concentration in Theorem 4.4,
which recovers the guarantee of [27, Lemma 18] when W “ 0dˆd.

3 The result shows that if we
have a good guess of the prediction matrix in terms of trace distance then the error can be made
to depend mostly on the first term—which has a better dependence on both d and n—without
sacrificing privacy. Note that the algorithm requires the same number of eigen-decompositions as
the one without predictions [27] and only requires some extra matrix additions to implement.

Theorem 4.4. If X has columns bounded by 1 in `2-norm then Algorithm 1 is ε-DP and w.p. ě 1´β

}Ĉ´XXT {n}2F ď
144d`Oplog2 1

β log2 dq

ε2n2
`

48d
?

2d`Opd log 1
β log dq

εn
}XXT {n´W}Tr (7)

Proof. Following the analysis in [4, Theorem 1] (c.f. Lemma B.1) the `1-sensitivity of the eigenvalues
of XXT {n´W is 2{n, and upper-bounding the `2-sensitivity of the covariance XXT {n of

?
2{n [12,

Lemma 3.2] shows that its `1-sensitivity is d
?

2{n. Thus the privacy guarantee follows from the
composition of two Laplace mechanisms with budget ε{2 each. For the utility guarantee we use

concentration of }y}2 ď 3
?
d{2 ` O

´

log 1
β log d

¯

w.p. ě 1 ´ β{2 for i.i.d. yris „ Lapp1q [27,

Lemma 15] and ~Y~8 ď 3
?
d`O

´

log 1
β log d

¯

w.p. ě 1´ β{2 for i.i.d. Yri,js „ Lapp1q for i ě j

and Yri,js “ Yrj,is for i ă j [27, Lemma 16]. Substituting z “ 4
εny and Z “ 2d

?
2

εn Y into Lemma 4.1
yields the result.

3Unlike Dong et al. [27] we square the Frobenius norm for the purposes of learning predictions later; in the
single-instance setting this is immaterial. Whether one is more interested in one or the other is application-dependent.
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Algorithm 2: MWEM with predictions

Input: dataset x P Zdě0 with n entries, query set Q Ă r´1, 1sd, prediction w P 4d,
number of iterations m ą 0, privacy parameter ε ą 0
w1 Ð w
for i “ 1, . . . ,m do

sample qi P Q w.p. 9 exp
`

ε
8m |xq,x´ nwi{}wi}1y|

˘

// exponential mechanism

wi`1 Ð wi d exp
´

xqi,x´nwi{}wi}1y`Lapp4m{εq
2n qi

¯

// multiplicative weights update

Output: x̂ “ n
m

řm
i“1 wi // release average iterate

In addition to its computational simplicity, there are two other aspects of Algorithm 1 that
are important for understanding the utility of its output: (1) it adds the same amount of noise
as the original SeparateCov method [27, Algorithm 1], despite our two-sided sensitivity analysis,
and (2) it is invariant to perturbations of the prediction matrix by any scalar multiple of the
identity, i.e. Ĉ is the same when W is replaced by W ` cId for any c P R. Crucially, this means
we can obtain a tighter bound for free by replacing the trace difference in the upper bound (7)
by mincPR }XXT {n ´ W ` cId}Tr. Substituting W “ 0dˆd then yields the following corollary,
which is a strict improvement upon the main pure-DP guarantee of Dong et al. [27, Lemma 19] for
prediction-free SeparateCov:

Corollary 4.2. If X has columns bounded by 1 in `2-norm then Algorithm 1 with W “ 0dˆd
returns w.p. ě 1´ β an estimate Ĉ P Rdˆd satisfying

}Ĉ´XXT {n}2F ď
144d`Oplog2 1

β log2 dq

ε2n2
`

48d
?

2d`Opd log 1
β log dq

εn
min
cPR

}XXT {n´ cId}Tr (8)

While this improvement is for a prediction-free method, it is the direct result of the two-sided
analysis we needed to incorporate predictions; as with our unbounded quantile release result, this
is another example of how learning-augmented analysis is useful even in the prediction-free setting.

Lastly, we point the interested reader to several supplementary results that highlight the broad
applicability of our framework. First, while our paper focuses on pure DP (except for learning),
the main analysis of Dong et al. [27] is in the zCDP setting; in Appendix B.2 we show that similar
guarantees hold there. Note that a prediction-free improvement similar to that of Corollary 4.2 can
also be shown for SeparateCov under zCDP (c.f. Corollary B.1). Lastly, we show that prediction-
dependent guarantee also holds for the older approach of Amin et al. [4], albeit with a modified
algorithm and a more involved sensitivity analysis (c.f. Appendix B.3).

4.3 Initializing synthetic dataset construction with a predicted dataset

Our final application is to private data release, in which the goal is to privately respond to queries of
a dataset, with the latter being defined via counts of items from some finite universe. For simplicity
we will assume an indexing that allows us to specify datasets as vectors x P Zdě0, and we will consider
a finite set Q of linear queries, i.e. ones that can be defined as an inner product of x with a vector
q P r´1, 1sd. Here again we will incorporate a prediction into an existing algorithm, specifically
the MWEM method of [36], which uses multiplicative weights to iteratively update a distribution
over the data domain and to construct a synthetic dataset x̂ P Rdě0 such that the maximum error
maxqPQ |xq,x´ x̂y| of all queries is small. The natural approach here is to assume the prediction
can be written as a distribution w P 4d and use it instead of the uniform initialization used by [36].
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Indeed this observation has been made in both the original work and by [53], who adapt the method
to only operate over the support of a source dataset. A prediction-dependent guarantee also follows
in a straightforward manner from the original analysis:4

Lemma 4.2. Algorithm 2 is ε-DP and produces x̂ P Rdě0 s.t. w.p. ě 1´ β

max
qPQ

|xq,x´ x̂y|2

n
ď

8n

m
DKL

ˆ

x

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

w

˙

`
16m2

ε2n

ˆ

3 log
2m

β
` 2 log2 |Q|

˙2

(9)

Our main purpose with this application is thus to discuss interesting issues arising in its
robustness and especially in learning the prediction. We also conclude by noting the similarity of
deriving prediction-based guarantees for all four methods—finding algorithms that implicitly use a
default prediction such as a uniform distribution or zero matrix—even while the actual algorithms
and uses of the predictions are quite different.

5 Robustness-consistency tradeoffs

While prediction-dependent guarantees work well if the prediction is accurate, without safeguards
they may perform catastrophically poorly if the prediction is incorrect. In this section we provide
robust alternatives to the methods we derived in the previous section, demonstrating the usefulness
of the algorithms with predictions framework for understanding robustness when incorporating
external information into DP algorithms.

5.1 Quantile estimation

While prediction-dependent guarantees work well if the prediction is accurate, without safeguards
they may perform catastrophically poorly if the prediction is incorrect. Quantiles provide a prime
demonstration of the importance of robustness, as using priors allows for approaches that may
assign very little probability to the interval containing the quantile. For example, if one is confident
that it has a specific value x P pa, bq one can specify a more concentrated prior, e.g. the Laplace
distribution around x. Alternatively, if one believes the data is drawn i.i.d. from some a known
distribution then µ can be constructed via its CDF using order statistics [23, Equation 2.1.5]. These
reasonable approaches can result in distributions with exponential or high-order-polynomial tails,
using which directly may work poorly if the prediction is incorrect.

Luckily, for our negative log-inner-product error metric it is straightforward to show a parameter-
ized robustness-consistency tradeoff by simply mixing the prediction prior µ with a robust prior ρ:

Corollary 5.1. For any prior µ : R ÞÑ Rě0, robust prior ρ : R ÞÑ Rě0, and robustness param-
eter λ P r0, 1s, releasing o P R w.p. 9 expp´εGapqpx, oq{2qµ

pλqpoq for µpλq “ p1 ´ λqµ ` λρ is
ˆ

2
ε log 1{β

λΨ
pq,εq
x pρq

˙

-robust and
´

2
ε log 1{β

1´λ

¯

-consistent w.p. ě 1´ β.

Proof. Apply Lemma A.1 and linearity of Ψ
pq,εq
x pµpλqq “ p1´ λqΨ

pq,εq
x pµq ` λΨ

pq,εq
x pρq.

Thus if the interval is finite and we set ρ to be the uniform prior, using µpλq in the algorithm
will have a high probability guarantee at most 2

ε log 1
λ -worse than the prediction-free guarantee

of Kaplan et al. [42, Lemma A.1], no matter how poor µ is for the data, while also guaranteeing w.p.

ě 1´ β that the error will be at most 2
ε log 1{β

1´λ if µ is perfect. A similar result holds for the case

4Similar to covariance estimation, we consider the mean squared error for the purposes of learning the prediction.
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of an infinite interval if we instead use a Cauchy prior. Corollary 5.1 demonstrates the usefulness
of the algorithms with predictions framework for not only quantifying improvement in utility using
external information but also for making the resulting DP algorithms robust to prediction noise.

The above argument for single-quantiles is straightforward to extend to the negative log of
the harmonic means of the inner products. In-fact for the binary case with uniform quantiles
we can trade-off between polylogpmq-guarantees similar to those of Kaplan et al. [42] and our
prediction-dependent bounds:

Corollary 5.2. Consider priors µ1, . . . , µm : R ÞÑ Rě0, Cauchy prior ρ : R ÞÑ Rě0 with location
a`b

2 and scale b´a
2 , and robustness parameter λ P r0, 1s. Then running Algorithm 5 on quantiles

that are uniform negative powers of two with K “ 2, edge-based prior adaptation, εi “ ε̄ “

ε{rlog2ms @ i, and priors µ
pλq
i “ λρ` p1´ λqµi @ i is

ˆ

2
ε rlog2ms2 log

ˆ

πm
b´a` 4R2

b´a

2λβψx

˙˙

-robust and
´

2
εφ

log2 mrlog2ms log m{β
1´λ

¯

-consistent w.p. ě 1´ β.

Proof. Apply Lemma A.2, Theorem A.1, and linearity of the inner products in Ψ̂
pεq
x and Ψ

pεq
x .

5.2 Covariance estimation

We take a different approach to making our prediction-based covariance estimation method robust to
matrices W with large trace distance to XXT {n. Instead of combining the prediction with a robust
default, we simply spend some privacy to check whether }XXT {n´W}Tr is larger than }XXT {n}Tr

and if so run Algorithm 1 with the zero matrix instead. This has the following guarantee:

Corollary 5.3. Pick λ P p0, 1q and run Algorithm 1 with privacy p1´λqε and symmetric prediction
matrix W if }XXT {n ´W}Tr ` z ď }XXT }Tr{n and 0dˆd otherwise, where z „ Lapp 4

λεnq. This

procedure is ε-DP, Õ
´

d
?
d

εn

`

1
εn ` }XXT {n}Tr

˘

¯

-robust, and Õ
´

d
?
d

ε2n2

¯

-consistent w.h.p.

Proof. By Lemma B.1 the difference }XXT {n´W}Tr´}XXT {n}Tr has sensitivity 4{n, so the compar-
ison of }XXT {n´W}Tr`z and }XXT {n}Tr is equivalent to using the Laplace mechanism with λε-DP
to estimate this difference and then taking the sign. Composing this with the privacy guarantee of
Theorem 4.4 yields ε-DP. Since Prt|z| ě 4

λεn log 2
β u ď β{2, the matrix Wz P tW,0dˆdu passed to Al-

gorithm 1 satisfies }XXT {n´Wz}Tr ď mint}XXT {n´W}Tr, }XXT {n}Tru`
4
λεn log 2

β w.p. ě 1´β{2.
Applying the utility guarantee of Theorem 4.4 w.p. 1´β{2 for constant λ P p0, 1q yields the result.

Adding this check for robustness make the data-independent term worse by a factor of
?
d;

note that the data-dependent term can still be up to Õpεn}XXT {n}Trq times larger, so this does
not remove the usefulness of the prediction guarantee. The additional cost results from the large
dependence on d of this latter term in the original bound, which is itself be caused by a mismatch
between the `1-sensitivity measure and the `2-bound on the columns. Specifically, if instead the
`1-norms of the columns are assumed bounded by one then the `1-sensitivity of XXT {n is 2{n,
making the numerator of the second term in Theorem 4.4 be Õp

?
dq and thus causing no (asymptotic)

cost due to robustness.5 Similarly, under the original assumption the corresponding term in the
`2-sensitivity-based zCDP guarantee is also Õp

?
dq (c.f. Theorem B.2) and leads to a term that

is Op
a

n{dq worse (multiplicatively) due to robustness (c.f. Corollary B.2); while worse in some
regimes, in sufficiently high dimensions (d “ Ωpnq) this means no (asymptotic) cost of robustness.

5It is not as clear that the `1-sensitivity of the eigenvalues would be as affected by the different assumption.
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Algorithm 3: Non-Euclidean DP-FTRL

Input: Datasets x1, . . . ,xT arriving in a stream in arbitrary order, domain Θ Ă Rp, step-size
η ą 0, noise scale σ ą 0, `2-sensitivity ∆2 ą 0, regularizer φ : Θ ÞÑ R

g1 Ð 0p
T ÐInitializeTree(T, σ2,∆2) // start tree aggregation [41, Section B.1]

for t “ 1, . . . , T do
θt Ð arg minθPΘ φpθq ` ηxgt, θy
suffer `pθt; xtq
T ÐAddToTree(T , t,∇θ`pθt; xtq) // add gradient to tree [41, Section B.1]

gt`1 ÐGetSum(T , t) // estimate
řt
s“1∇θ`pθs; xsq [41, Section B.1]

5.3 Data release

As with quantiles, a natural approach to making data release robust is to mix the initialization with
the default uniform distribution, achieving a tunable tradeoff. In the following result we specify the
number of steps based on the the worst-case guarantees for a prediction-free algorithm and obtain a
favorable tradeoff that allows for very small values of λ for high consistency while still maintaining
robustness due the latter’s log d

λ dependence.

Corollary 5.4. For d ě 2 and any w P 4d, running Algorithm 2 with m “ 3

b

ε2n2 log d
2 log4 |Q|

and

initialization wpλq “ p1 ´ λqw ` λ1d{d is ε-DP, Õ
ˆ

p1` log4{3 |Q|q 3

b

n
ε2 log d

log d
λ

˙

-robust, and

Õ
ˆ

λp1` log4{3 |Q|q 3

b

n log2 d
ε2

˙

-consistent w.h.p., where Õ hides poly-log terms in ε, n, log d, log |Q|.

Proof. If w “ x
n then we have DKLp

x
n ||w

pλqq ď p1´ λqDKLp
x
n ||wq ` λDKLp

x
n ||w ď λ log d by joint

convexity of DKL. On the other hand DKLp
x
n ||w

pλqq ď xxn , log dx
λny ď log d

λ . Substituting into
Lemma 4.2 and simplifying yields the result.

6 Learning predictions, privately

Our last objective will be to learn predictions that do well according to the quality metrics we have
defined, which themselves control the utility loss of running the DP algorithms. Past work, e.g. the
public-private framework [10, 11, 53], has often focused on domain adaptation-type learning where
we adapt a public source to private target. We avoid assuming access to large quantities of i.i.d.
public data and instead assume numerous tasks that can have sensitive data and may be adversarially
generated. As discussed before, this is the online setting where we see loss functions defined by a
sequence of datasets x1, . . . ,xT and aim to compete with best fixed prediction in-hindsight. Note
such a guarantee can also be converted into excess risk bounds (c.f. Appendix D.1).

6.1 Non-Euclidean DP-FTRL

Because the optimization domain is not well-described by the `2-ball, we are able to obtain significant
savings in dependence on the dimension and in some cases even in the number of instances T by
extending the DP-FTRL algorithm of [41] to use non-Euclidean regularizers, as in Algorithm 4. For
this we prove the following regret guarantee:
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Algorithm 4: Non-Euclidean DP-FTRL. For the InitializeTree, AddToTree, and GetSum

subroutines see Kairouz et al. [41, Section B.1].

Input: Datasets x1, . . . ,xT arriving in a stream in arbitrary order, domain Θ Ă Rp, step-size
η ą 0, noise scale σ ą 0, `2-sensitivity ∆2 ą 0, regularizer φ : Θ ÞÑ R

g1 Ð 0p
T ÐInitializeTree(T, σ2,∆2) // start tree aggregation

for t “ 1, . . . , T do
θt Ð arg minθPΘ φpθq ` ηxgt, θy
suffer `xtpθtq
T ÐAddToTree(T , t,∇θ`xtpθtq) // add gradient to tree

gt`1 ÐGetSum(T , t) // estimate
řt
s“1∇θ`xspθsq

Theorem 6.1. Let θ1, . . . , θT be the outputs of Algorithm 4 using a regularizer φ : Θ ÞÑ R that is
strongly-convex w.r.t. } ¨ }. Suppose @ t P rT s that `xtp¨q is L-Lipschitz w.r.t. } ¨ } and its gradient
has `2-sensitivity ∆2. Then w.p. ě 1´ β1 we have @ θ˚ P Θ that

T
ÿ

t“1

`pθt; xtq ´ `pθ
˚; xtq ď

φpθ˚q ´ φpθ1q

η
` ηL

˜

L`

˜

G` C

d

2 log
T

β1

¸

σ∆2

a

rlog2 T s

¸

T (10)

where G “ Ez„N p0p,Ipq sup}y}ď1xz,yy “ Ez„N p0p,1q}z}˚ is the Gaussian width of the unit } ¨ }-ball

and C is the Lipschitz constant of } ¨ }˚ w.r.t. } ¨ }2. Furthermore, for any ε1 ď 2 log 1
δ1 , setting

σ “ 1
ε1

b

2rlog2 T s log 1
δ1 makes the algorithm pε1, δ1q-DP.

Proof. The privacy guarantee follows from past results for tree aggregation [41, 69]. For all t P rT s
we use the shorthand ∇t “ ∇θ`xtpθtq; we can then define θ̃t “ arg minθPΘ φpθq ` η

řt
s“1x∇s, θy and

bt “ gt ´
řt
s“1∇s. Then

T
ÿ

t“1

`xtpθtq ´ `xtpθ
˚q ď

T
ÿ

t“1

x∇t, θt ´ θ˚y

“

T
ÿ

t“1

x∇t, θ̃t ´ θ˚y `
T
ÿ

t“1

x∇t, θt ´ θ̃ty

ď
φpθ˚q ´ φpθ1q

η
` η

T
ÿ

t“1

}∇t}2˚ `
T
ÿ

t“1

}∇t}˚}θ̃t ´ θt}

ď
φpθ˚q ´ φpθ1q

η
` ηL

˜

LT `
T
ÿ

t“1

}bt}˚

¸

(11)

where the first inequality follows from the standard linear approximation in online convex opti-
mization [72], the second by the regret guarantee for online mirror descent [68, Theorem 2.15], and
the last by applying McMahan [57, Lemma 7] with φ1p¨q “ φp¨q ` η

řt
s“1x∇s, ¨y, ψp¨q “ ηxbt, ¨y,

and φ2p¨q “ φp¨q ` ηxgt, ¨y, yielding }θ̃t ´ θt} ď η}bt}˚ @ t P rT s. The final guarantee follows by
observing that the tree aggregation protocol adds noise bt „ N p0p, σ2∆2

2rlog2 tsq to each prefix sum
and applying the Gaussian concentration of Lipschitz functions [13, Theorem 5.6].
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The above proof of this result follows that of the Euclidean case, which can be recovered by
setting G “ Op

?
dq, C “ 1, and ∆2 “ OpLq.6 In addition to the Lipschitz constants L, a key term

that can lead to improvement is the Gaussian width G of the unit } ¨ }-ball, which for the Euclidean
case is Op

?
dq but e.g. for } ¨ } “ } ¨ }1 is Op

?
log dq. Note that a related dependence on the Laplace

width of Θ appears in Agarwal and Singh [2, Theorem 3.1], although their guarantee only holds for
linear losses and is not obviously extendable. Thus Theorem 6.1 may be of independent interest for
DP online learning.

6.2 Learning priors for one or more quantiles

We now turn to learning priors µt “
`

µtr1s, ¨ ¨ ¨ , µtrms
˘

to privately estimate m quantiles q1, . . . , qm
on each of a sequence of T datasets xt. We will aim to set µ1, . . . , µT s.t. if at each time t we
run Algorithm 5 with privacy ε ą 0 then the guarantees given by Lemmas A.1 and A.2 will be
asymptotically at least as good as those of the best set of measures in Fm, where F is some class
of measures on the finite interval pa, bq. The latter we will assume to be known and bounded. Note
that in this section almost all single-quantile results follow from setting m “ 1, so we study it jointly
with learning for multiple quantiles.

Ignoring constants, the loss functions implied by our prediction-dependent upper bounds for
multiple-quantiles are the following negative log-harmonic sums of prior-EM inner-products:

U
pεq
xt pµq “ log

m
ÿ

i“1

1

Ψ
pqi,εiq
xt pµrisq

“ log
m
ÿ

i“1

1
şb
a expp´εi Gapqipxt, oq{2qµrispoqdo

(12)

We focus on minimizing regret maxµPFm
řT
t“1 U

pεq
xt pµtq´U

pεq
xt pµq over these losses for priors µris in a

class FV,d of probability measures that are piecewise V -Lipschitz over each of d intervals uniformly par-
titioning ra, bq. This is chosen because it covers the class FV,1 of V -Lipschitz measures and the class of
F0,d of discrete measures that are constant on each of the d intervals. The latter can be parameterized

by W P 4m
d , so that the losses have the form U

pεq
xt pµWq “ log

řm
i“1xst,i,Wrissy

´1 for st,i P Rdě0. This

can be seen by setting st,irjs “
d
b´a

şa` b´a
d
j

a` b´a
d
pj´1q

expp´εi Gapqipxt, oq{2qdo and µWris
poq “ d

b´aWri,js

over the interval
“

a` b´a
d pj ´ 1q, a` b´a

d j
˘

. Finally, for λ P r0, 1s we also let F pλq “ tp1´λqµ` λ
b´a :

µ P Fu denote the class of mixtures of measures µ P F with the uniform measure.
As detailed in Appendix D.2, losses of the form ´ logxst, ¨y, i.e. those above when m “ 1, have

been studied in (non-private) online learning [7, 37]. However, specialized approaches, e.g. those
taking advantage exp-concavity, are not obviously implementable via prefix sums of gradients, the
standard approach to private online learning [2, 41, 69]. Still, we can at least use the fact that
we are optimizing over a product of simplices to improve the dimension-dependence by applying
Non-Euclidean DP-FTRL with entropic regularizer φpWq “ mxW, log Wy, which yields an m-way
exponentiated gradient (EG) update [46]. To apply its guarantee for the problem of learning priors

for quantile estimation, we need to bound the sensitivity of the gradients ∇WU
pεq
xt pµWq to changes in

the underlying datasets xt. This is often done via a bound on the gradient norm, which in our case is
unbounded near the boundary of the simplex. We thus restrict to γ-robust priors for some γ P p0, 1s

by constraining W P 4m
d to have entries lower bounded by γ{d—a domain where }∇WU

pεq
xt pµWq}1 ď

d{γ (c.f. Lemma D.1)—and bounding the resulting approximation error; we are not aware of even
a non-private approach that avoids this except by taking advantage of exp-concavity [37].

6As of this writing, the most recent arXiv version of Kairouz et al. [41, Theorem C.1] has a typo leading to missing
a Lipschitz constant in the bound, confirmed via correspondence with the authors.
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We thus have a bound of 2d{γ on the `2-sensitivity. However, this may be too loose since it
allows for changing the entire dataset xt, whereas we are only interested in changing one entry.
Indeed, for small ε we can obtain a tighter bound:

Lemma 6.1. The `2-sensitivity of ∇wU
pεq
xt pµwq is d

γ mint2, eε̃m´1u, where ε̃m “ p1`1mą1qmaxi εi.

Proof for m “ 1; c.f. Appendix D.2.1. Let x̃t be a neighboring dataset of xt and let U
pεq
x̃t
pµWq “

´ logxs̃t,wy be the corresponding loss. Note that maxoPra,bs |Gapqpxt, oq ´Gapqpx̃t, oq| ď 1 so

s̃trjs “

ż a` b´a
d
j

a` b´a
d
pj´1q

exp
´

´
ε

2
Gapqpx̃t, oq

¯

do P e˘
ε
2

ż a` b´a
d
j

a` b´a
d
pj´1q

exp
´

´
ε

2
Gapqpxt, oq

¯

do “ e˘
ε
2 strjs

(13)

Therefore since m “ 1 we denote w “ Wr1s, st “ st,1, and s̃t “ s̃t,1 and have

}∇wU
pεq
xt pµwq ´∇wU

pεq
x̃t
pµwq}2 “

g

f

f

e

d
ÿ

j“1

ˆ

strjs

xst,wy
´

s̃trjs

xs̃t,wy

˙2

“

g

f

f

e

d
ÿ

j“1

s2
trjs

xst,wy2

ˆ

1´
s̃trjsxst,wy

strjsxs̃t,wy

˙2

ď }∇wU
pεq
xt pµwq}1 max

j
|1´ κj |

(14)

where κj “
s̃trjsxst,wy

strjsxs̃t,wy
P

strjs expp˘ ε
2
qxst,wy

strjsxst,wy expp˘ ε
2
q
P expp˘εq by Equation 13. The result follows by taking the

minimum with the bound on the Euclidean norm of the gradient (Lemma D.1).

Since eε ´ 1 ď 2ε for ε P p0, 1.25s, for small ε this allows us to add less noise in DP-FTRL. With
this sensitivity bound, we apply Algorithm 4 using the entropic regularizer to obtain the following
result (c.f. Appendix D.2.2):

Theorem 6.2. For d ě 2, γ P p0, 1{2s if we run Algorithm 4 on U
pεq
xt pµWq “ log

řm
i“1

1

Ψ
pqi,εiq
xt pµWq

over γ-robust priors with step-size η “ γm
d

c

logpdq{T

1`
´

2
?

logpmdq`
b

2 log T
β1

¯

σ
?

logrlog2 T s mint1,ε̃mu
and regular-

izer φpWq “ mxW, log Wy then for any V ě 0, λ P r0, 1s, and β1 P p0, 1s we will have regret

max
µrisPF

pλq
V,d

T
ÿ

t“1

U
pεq
xt pµWtq ´ U

pεq
xt pµq

ď
V mT

γdψ̄
pb´ aq3 ` 2 maxtγ ´ λ, 0uT log 2

`
2md

γ

g

f

f

e

˜

1`

˜

4
a

logpmdq ` 2

d

2 log
T

β1

¸

σ
a

rlog2 T s mint1, ε̃mu

¸

T log d

(15)

w.p. ě 1´β1, where ψ̄ is the harmonic mean of ψxt “ mink xtrk`1s´xtrks and ε̃m “ p1`1mą1qmaxi εi.

For any ε1 ď 2 log 1
δ1 setting σ “ 1

ε1

b

2rlog2 T s log 1
δ1 makes this procedure pε1, δ1q-DP.
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Note that in the case of V ą 0 or λ “ 0 we will need to set d “ ωT p1q or γ “ oT p1q in order
to obtain sublinear regret. Thus for these more difficult classes our extension of DP-FTRL to
non-Euclidean regularizers yields improved rates, as in the Euclidean case the first term has an
extra 4

?
d-factor. The following provides some specific upper bounds derived from Theorem 6.2:

Corollary 6.1. For each of the following classes of priors there exist settings of d (where needed)
and γ ą 0 in Theorem 6.2 that guarantee obtain the following regret w.p. ě 1´ β1:

1. λ-robust and discrete µris P F
pλq
0,d : Õ

ˆ

dm
λ

c

´

1` mint1,ε̃mu
ε1

¯

T

˙

2. λ-robust and V -Lipschitz µris P F
pλq
V,1 : Õ

ˆ

m
λ

b

V
ψ̄

4

c

´

1` mint1,ε̃mu
ε1

¯

T 3

˙

3. discrete µris P F0,d: Õ
ˆ

?
dm 4

c

´

1` mint1,ε̃mu
ε1

¯

T 3

˙

4. V -Lipschitz µris P FV,1: Õ
ˆ

?
m 4

b

V
ψ̄

8

c

´

1` mint1,ε̃mu
ε1

¯

T 7

˙

Thus competing with λ-robust priors with discrete PDFs enjoys the fastest regret rate of Õp
?
T q,

while either removing robustness or competing with any V -Lipschitz prior has regret ÕpT 3{4q, and do-
ing both has regret ÕpT 7{8q. When comparing to Lipschitz priors we also incur a dependence on the in-
verse of minimum datapoint separation, which may be small. A notable aspect of all the bounds is that
the regret improves with small ε due to the sensitivity analysis in Lemma 6.1; indeed for ε “ Opε1q the
regret bound only has a Oplog 1

δ1 q-dependence on the privacy guarantee. Finally, for λ-robust priors

we can also apply the log b´a
λψ -boundedness of ´ log Ψ

pq,εq
x pµq and standard online-to-batch conversion

(e.g. Cesa-Bianchi et al. [17, Proposition 1] to obtain the following sample complexity guarantee:

Corollary 6.2. For any α ą 0 and distribution D over finite datasets x of ψ-separated points from

pa, bq, if we run the algorithm in Theorem 6.2 on T “ Ω

ˆ

log 1
β1

α2

´

d2m2

λ2

´

1` mint1,ε̃mu
ε1

¯

` log2 1
λψ

¯

˙

i.i.d. samples from D then w.p. ě 1´β1 the average Ŵ “ 1
T

řT
t“1 Wt of the resulting iterates satisfies

Ex„D log
řm
i“1

1

Ψ
pqi,εiq
x pµŴris

q
ď min

µrisPF
pλq
0,d

Ex„D log
řm
i“1

1

Ψ
pqi,εiq
x pµrisq

` α. For α-suboptimality w.r.t.

µris P F
pλq
V,1 the sample complexity is Ω

ˆ

log 1
β1

α2

´

V 2m2

λ4ψ2α2

´

1` mint1,ε̃mu
ε1

¯

` log2 1
λψ

¯

˙

.

6.3 Learning to estimate covariance matrices

We next study how to learn prediction matrices for DP covariance estimation by targeting the
trace distance between them and the ground truth. This is a more straightforward learning task,
with Lipschitz losses over a finite-dimensional domain. Indeed, we could apply standard DP-
FTRL and obtain regret Õp

a

p1` d{ε1qdT q w.r.t. any symmetric matrix W because the losses
UXtpWq “ }XtX

T
t {|Xt| ´W}Tr are

?
d-Lipschitz w.r.t. the Frobenius norm. However, we can

reduce the dependence on the dimension by a
?
d-factor by combining our non-Euclidean DP-FTRL

algorithm with the well-known matrix-learning technique of using Schatten p-norm regularization [29]:
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Theorem 6.3. Let X1, . . . ,XT be a sequence of datasets with d-dimensional columns bounded by
1 in the `2-norm. If we run Algorithm 4 on losses UXtpWq “ }XtX

T
t {|Xt| ´W}Tr with step-size

η “
c

6 logpdq{T

1`
´?

d`
b

2 log T
β1

¯

σ
?
drlog2 T s

and regularizer φp¨q “ 3
2 log d~ ¨ ~2

p then we will have regret

max
WPRdˆd

T
ÿ

t“1

UXtpWtq ´ UXtpWq ď O

¨

˝

g

f

f

e

˜

1`

˜

?
d`

d

log
T

β1

¸

σ
a

drlog2 T s

¸

T log d

˛

‚ (16)

w.p. ě 1´ β1. For any ε1 ď 2 log 1
δ1 setting σ “ 1

ε1

b

2rlog2 T s log 1
δ1 makes this procedure pε1, δ1q-DP.

Furthermore, suppose the datasets are drawn i.i.d. from some distribution D. If we run the same

algorithm and return the average prediction Ŵ “ 1
T

řT
t“1 Wt then T “ Ω̃

´

1`d{ε1

α2 log 1
β1

¯

samples

suffice to guarantee that w.p. 1´ β1

EX„D}XXT {|X| ´ Ŵ}Tr ď min
W

EX„D}XXT {|X| ´W}Tr ` α (17)

Proof. The loss functions }XtX
T
t {|Xt| ´W}Tr have gradients ´UtStU

T
t , where Ut is the matrix of

eigenvectors of XtX
T
t {|Xt|´W and St is the diagonal matrix of the signs of its eigenvalues; the losses

are thus
?
d-Lipschitz w.r.t. the Frobenius norm and 1-Lipschitz w.r.t. the trace norm. Note that

these gradients can be computed in polynomial time via eigendecomposition and used in DP-FTRL
with the Schatten-p norm regularizer 3

2 log d~ ¨ ~2
p for p “ 1` 1{ log d, which is strongly-convex w.r.t.

the trace norm } ¨ }Tr [29]. Since the Gaussian width of the (symmetric) trace ball is Op
?
dq [1] and

the spectral norm is 1-Lipschitz w.r.t. the Frobenius norm, applying Theorem 6.1 yields the bound

3 log d~W~2
p

2η
` η

˜

1`

˜

Op
?
dq `

d

2 log
T

β1

¸

σ
a

drlog2 T s

¸

T (18)

For any optimal W we have

~W~p ď }W}Tr ď
1

T

T
ÿ

t“1

}W ´XtX
T
t {|Xt|}Tr ` }XtX

T
t {|Xt|}Tr

ď
2

T

T
ÿ

t“1

TrpXtX
T
t q{|Xt| ď 2

(19)

so the regret follows by substituting η. The sample complexity result follows from online-to-batch
conversion (c.f. Appendix D.1).

Thus prediction matrices for covariance estimation are efficiently and privately learnable, in both
the online and distributional settings. Moreover, for both our extension to non-Euclidean DP-FTRL is
critical for obtaining a weaker dependence on the dimension. One limitation of the analysis is that, un-
like for quantiles, we did not conduct a refined analysis by studying how swapping single columns of Xt

rather than the entire dataset affects the gradient of UXt . It is not immediately clear that an improve-
ment is possible, with the difficulty being the gradient’s dependence on the signs of the eigenvalues.

6.4 Learning the initialization and number of iterations for data release

Finally, we learn to initialize MWEM-based data release. Here we are faced with optimizing

Uxtpw,mq “
8nt
m
DKL

ˆ

xt
nt

ˇ

ˇ

ˇ

ˇw

˙

`
16m2

ε2n` t

ˆ

3 log
2m

β
` 2 log2 |Q|

˙2

(20)
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Notably, unlike the past learning settings, this function is parameterized by both a prediction w and
the number of steps m, which we will also set online. The reason for this is that the optimal step-size
depends on the similarity between instances: if for the optimal w the measure DKLpxt{nt||wq is
small for most datasets xt then it is better to set a small m above, whereas if it is usually large
it should be counter-acted with a larger m. Our goal will thus be to set wt and mt together in
an online fashion so as to simultaneously compete with the optimal λ-robust w P 4d for some
λ ą 0 and the optimal number of steps m ą 0. To do so we will run DP-FTRL with the entropic
regularizer, i.e. private exponentiated gradient (EG), to set both the initialization from the simplex
4d and to set the number of iterations mt at step t by sampling from a categorical distribution.
This has the following regret guarantee (c.f. Appendix D.4):

Theorem 6.4. Let x1, . . . ,xT P Zdě0 be a sequence of datasets with nt “ }xt}1 entries each,
let N “ maxt nt, and consider any γ P p0, 1s and λ P r0, 1s. Then there exists M P Zą0 and
ηθ, σθ, ηw, σw ą 0 s.t. running DP-FTRL with regularizer φpwq “ xw, log wy, step-size ηw, and
noise σw on the losses ntDKLp

xt
nt
||wq over the domain wris ě γ{d to set wt and simultaneously

running DP-FTRL with regularizer φpθq “ xθ, log θy, step-size ηθ, and noise σθ on the losses
Em„θUxtpwt,mq over the domain 4M and setting mt using the categorical distribution defined by
θt over the M -simplex such that the entire scheme is pε1, δ1q-DP and w.h.p. has regret

Õ

˜˜

N
4
3

mint1, ε2u
`

N
2
3 {
?
ε1

mint1, εu
`
dN

γ
`
d

γ

c

N

ε1

¸

?
T `maxtγ ´ λ, 0uNT

¸

(21)

w.r.t. any m ą 0 and w P 4d satisfying wris ě
λ
d . For λ ą 0 setting γ “ λ yields regret

Õ
´

d
λmint1,ε2u

N
4
3

a

T {ε1
¯

; for λ “ 0 and T ě d2, setting γ “
?
d

4?T
has regret Õ

ˆ

N
4
3

mint1,ε2u

a

d{ε1T
3
4

˙

.

As in quantile learning, we suffer a strong dependence on the dimension here, and the rate is
worse if we try to compete the non-robust initializations (λ “ 0). It thus remains an open question
whether either a better learning result or upper bound is possible. Nevertheless, to interpret this

guarantee, note that for Hλ “ minwrisěλ{d

´

řT
t“1 ntDKLpxt{nt||wq

¯

{

´

řT
t“1 nt

¯

and if nt “ n @ t

then we have that the optimum-in-hindsight for the average upper bound is

min
mą0,wrisěλ{d

1

T

T
ÿ

t“1

Uxtpw,mq “ Õ

¨

˚

˝

log
4
3 |Q|

ε
2
3

´

1
T

řT
t“1 nt

¯
2
3

´

T {
řT
t“1

1
nt

¯
1
3

H
2
3
λ

˛

‹

‚

“ Õ

¨

˝

3

d

n log4 |Q|

ε2
H2
λ

˛

‚

(22)

Since Hλ approximates the entropy of the aggregate distribution across instances x1, . . . ,xT—indeed

for λ “ 0 it is exactly the entropy of the average distribution
´

řT
t“1 xt

¯

{
řT
t“1 nt—the regret

guarantee shows that we will do well asymptotically if the entropy is small. Note that being able
to choose m in addition to w is crucial to adapting to this entropy, and is closely related to the
problem of choosing the step-size in meta-learning, where similar aggregate measures appear as
forms of task-similarity [8, 43].
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7 Applications

Having derived prediction-dependent performance bounds for three DP tasks and analyzed their ro-
bustness and learnability, we now investigate how these algorithms might be deployed in practice. We
focus on the problem of multiple quantile release and consider the two motivating settings from the in-
troduction: public-private transfer and sequential release. While we make direct use of the robust mix-
ing scheme devised in Section 5, our learnability analysis in Section 6 yielded unwieldy discretization-
based algorithms due to the focus on approximating very general priors. This generality seems unnec-
essary, as we might reasonably expect simple, unimodal distributions to be good priors for quantiles.

We thus consider instead the problem of optimizing the performance bounds Ux “ ´ log Ψx for
multiple quantile release across classes of location-scale priors, which for some measure f : R ÞÑ Rě0

have the form µν,σpxq “
1
σf

`

x´ν
σ

˘

for ν P R and σ ą 0. Such families allows us to model both the loca-
tion of a quantile using ν “ xw, fy—where w P Rd is a linear model from public features f P Rd about
the dataset—and our uncertainty about it using σ, all while staying in reasonable dimensions. Note

that in this section we target only the ε-independent bound Ux, as U
pεq
x does not yield a convex objec-

tive; furthermore, while we mainly discuss the single-quantile bound U
pqq
x for simplicity, the general re-

sults (c.f. Section E) extend naturally to the case of m ą 1 because it is the log-sum-exp of the former.

7.1 Convexity vs. robustness of location-scale models

We must first determine which location-scale family to use, as this include Gaussians with mean
ν and variance σ2, Laplace with mean ν and scale σ, Cauchy with location ν and scale σ, and more.
To make this decision, we consider two desiderata: (1) the prior should be robust in the way the
Cauchy is robust, i.e. being wrong about the data location should not harm us too much, and (2)

it should be easy to learn the parameters ν and σ, e.g. by optimizing U
pqq
x pµν,σq.

While not necessary, one way of ensuring (2) is convexity of U
pqq
x , which we focus on as it

enables efficient algorithms. Here we make use of a connection between these upper bounds and
the likelihood of censored regression [62], which for noise ξi P R models a relationship between
features fi P Rd and a variable yi “ xw, fiy ` ξi when information about yi is only provided in terms
of an interval rai, biq containing it (e.g. an individual’s income bracket, not their exact income). If
ξi is from a location-scale distribution with ν “ 0 the log-likelihood given datapoints pai, bi, fiq is

Ltai,bi,fiuni“1
pw, σq “

n
ÿ

i“1

log

ż bi

ai

1

σ
f

ˆ

y ´ xw, fiy

σ

˙

dy (23)

Observe that for a “ xrtqnus and b “ xrtqnus`1 we have

U
pqq
x pµxw,fy,σq “ ´ logµxw,fy,σppa, bsq “ ´ log

ż b

a

1

σ
f

ˆ

o´ xw, fy

σ

˙

do (24)

which is the negative of La,b,f pw, σq. We thus adopt the reparameterization of Burridge [15], who
showed that (23) is concave w.r.t. pv, φq “ pwσ ,

1
σ q whenever f is log-concave, a property satisfied

by the Gaussian and Laplace families but not the Cauchy. Therefore, for such f we have that

`
pqq
x pxv, fy, φq “ U

pqq
x pµ xv,fy

φ
, 1
φ

q is convex w.r.t. pv, φq.

Unfortunately, we show that no log-concave f is robust, in the sense that for any R ą 0 there

exists a dataset of points in the interval pθ˘Rqn s.t. U
pqq
x pµθ,1q “ ΩpRq (rather than Oplogp1`R2qq

as shown for the Cauchy family in Corollary 4.1). On the other hand, log-concave location-scale

families are the only ones for which U
pqq
x is convex, both for the original parameterization and that

of Burridge [15]. We record these facts in the following theorem:
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Theorem 7.1 (c.f. Thm. E.1). Let µν,σ be a location-scale family associated with a continuous
measure f : R ÞÑ Rě0.

1. If f is log-concave then D a, b ą 0 s.t. for any R ą 0, ψ P p0, R2n s, q ě
1
n , and θ P R there

exists x P pθ ˘Rqn with mini xri`1s ´ xris “ ψ s.t. U
pqq
x pµθ,1q “ aR` log b

ψ .

2. If f is not log-concave then there exists x P Rn with mini xri`1s ´ xris ą 0 s.t. U
pqq
x pµθ,1q is

non-convex in θ.

Note the latter dataset is not degenerate: for f strictly log-convex over ra, bs, any x whose

optimal interval has length ă b´a
2 has non-convex U

pqq
x pµθ,1q “ ´ log Ψ

pqq
x pµθ,1q. We must thus choose

between having a robust location-scale family like the Cauchy or an easy-to-optimize log-concave one.
As we can ensure robustness of the learned prior post-hoc using the approach of Section 5, we choose
the latter. Specifically, we use the Laplace prior, as it is in some sense the most robust log-concave
distribution (it has loss ΘpRq if x P pθ˘Rqn, whereas e.g. the Gaussian has loss ΘpR2q) and because

it yields a numerically stable closed-form expression (99) for `
pqq
x pθ, φq (unlike e.g. the Gaussian).

7.2 Augmenting quantile release using public data

We turn to two applications that depend on optimizing upper bounds `
pqq
x pθ, φq on the performance

of quantile release using the Laplace prior with scale 1
φ and location θ

φ . While our final objective

is small Gapq, we will mainly discuss optimizing `
pqq
x “ U

pqq
x , or its expectation if x is drawn from

some distribution. In the former case this directly bounds (w.h.p.) the cost of multiple quantile
release, while a bound on ExUx can bound EGapmax by setting β appropriately. For example, using

β “ 2π2

εn expp2
a

logp2q logpm` 1qq in Theorem 4.3 implies Gapmax has expectation at most

O
ˆ

exp
´

2
a

logp2q logpm` 1q
¯ logpεmnq ` ExUx

ε

˙

(25)

Our first application is the frequently studied setting where we have a large public dataset x1 P RN
and want to use it to improve the release of statistics of a smaller private dataset x P Rn. To apply

our quantile release method, we must use x1 to construct a prior µ1 for each that makes U
pqq
x pµ1q small.

If the entries of x and x1 are sampled i.i.d. from similar distributions D and D1, respectively, the

convexity of U
pqq
x suggests using stochastic optimization find a prior µ that approximately minimizes

the expectation Ez„D1nUzpµq using samples of size n drawn from x1. We provide a guarantee for a
variant of this generic approach that runs online gradient descent (OGD) with separate learning
rates for θ and φ on samples drawn without replacement from x1:

Theorem 7.2 (c.f. Thm. E.2). If D and D1 have bounded densities with bounded support then
there exists an algorithm optimizing Ux1t

over T datasets x1t of size n drawn from x1 P RN without
replacement that runs in time OpmNq and returns a set µ1 of m Laplace priors s.t. w.h.p.

Ex„DnUxpµ
1q ď min

µPLapmB,σmin,σmax

Ex„DnUxpµq ` Õ
ˆ

TVqpD,D1q `
c

mn

N

˙

(26)

where LapB,σmin,σmax
is the set of Laplace priors with locations in r˘Bs and scales in rσmin, σmaxs

and TVqpD,D1q is the total variation distance between the joint distributions of the order statistics
 

pxrtqinus,xrtqinu`1sq
(m

i“1
for x „ Dn and

!

px1
rtqinus

,x1
rtqinu`1sq

)m

i“1
for x1 „ D1n.
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Figure 2: Public-private release of nine quantiles using one hundred samples from the Adult age
(left) and hours (right) datasets. The public data is the Adult training set while private data is test.

For N " mn, the suboptimality of µ1 for the upper bound Ux will depend on the statistical
distance between the quantile intervals of D and D1: even if D and D1 are dissimilar, similar order
statistic distributions will ensure good performance. Note, as in Section 5, we can hedge against
large TVqpD,D1q by mixing the output µ1 with a robust prior.

We evaluate this approach, which we call Public Fit or PubFit, on Adult [47] and Goodreads [70],
both used previously for DP quantiles [33, 42]. Because our guarantees improve with different
step-sizes for θ and φ, we use COCOB [60]—an OGD variant that provably sets per-coordinate
step-sizes without the need for tuning—as PubFit’s stochastic solver. We also test a robust version
where its output is mixed with a half-Cauchy distribution, and three baselines: the Uniform prior,
just using the quantiles of the public data (public quantiles), and using the public quantiles to
set the location parameters of m Cauchy priors (public Cauchy).

Adult tests the D “ D1 case, with its “train” set the public dataset and a hundred samples from
“test” as private. Figure 2 shows that public quantiles does best at small ε, as is expected with
no distribution shift, but it cannot adapt to the empirical distribution of a small number of private
points, and so is worse at ε ą 1. Among the rest, PubFit is most similar to public-quantiles at
small ε but still does well at large ε.

We use the Goodreads “History” and “Poetry” genres to evaluate under distribution shift by
fitting on all but a small fraction of data from the former and releasing quantiles of samples from vary-
ing mixtures of the two datasets. As expected, the performance of public quantiles deteriorates
with more samples from “Poetry.” For book ratings, PubFit is best among the remaining methods,
but without much change with distribution shift, possibly due to an incomplete fit of the data.
For page counts, the PubFit methods and public Cauchy both do as well as public-quantiles

when most data is from “History,” but PubFit (robust) deteriorates least—and much less than
regular PubFit—as the distribution shifts. This highlights the importance of robustness analysis,
and suggest the former as a good method to start with, as it takes advantage of similar public and
private distributions (Fig. 2) while never doing much worse than the default method (Uniform)
when the the distributions are dissimilar (Fig. 3).
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Figure 3: Public-private release of nine quantiles on one hundred samples from the Goodreads
rating (left) and page count (right) datasets, with ε “ 1. The public data is the “History” genre
while private data is sampled from a mixture of it and “Poetry.”

7.3 Sequentially setting priors using past sensitive data

Our second application is sequential release, which we do not believe has been studied, but arises
naturally if e.g. we wish to release daily statistics from a continuous stream of data. Here we have
a sequence of datasets x1, . . . ,xT , each with associated public features f1, . . . , fT P Rd (e.g. day of
the week), and we wish to minimize the average maximum gap 1

T

řT
t“1 maxi Gapqipxt, ot,iq, whose

expectation can be bounded (25) in terms of 1
T

řT
t“1 Uxt . For simplicity, we assume individuals do

not occur in multiple datasets xt, e.g. we are releasing the median age of new users of a service.
Note the natural way to avoid this assumption is to compose the privacy budgets at each time;
empirically our methods are especially useful in the low privacy regime this entails.

Our analysis suggests that we can apply online learning here, e.g. doing the following at each
t starting with a prior µ1:

1. release ot using the prior µt and suffer Gapqpxt, otq

2. update to µt`1 using online learning on the loss `
pqq
xt

Because `
pqq
xt pθ, φq “ U

pqq
xt pµ θ

φ
, 1
φ
q is convex for Laplace priors, online convex optimization (OCO) [68]

lets us compete with the best prior in hindsight according to the upper bounds U
pqq
xt pµtq, or with

the best linear map w to locations xw, fty. We can again hedge against poor predictions by mixing
with a constant robust distribution.

However, we face the difficulty that online learning on losses `
pqq
xt leaks information about

xt. There are two natural solutions. One is to use part of the budget ε1 ă ε on a DP online
learner [39, 69] and hope that the reduction in budget allocated to quantile release is made up for
by the improved priors. Alternatively, we can replace ` with a proxy loss ˆ̀ that does not depend
on the data and optimize it using regular OCO. The first can be done with provable guarantees
by applying DP-FTRL [41], again using two different step-sizes:
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Figure 4: Comparison of sequential release over time on Synthetic (left, log10 ε “ ´1{2) and
CitiBike (right, log10 ε “ ´2) tasks.

Theorem 7.3 (c.f. Thm. E.3). Consider a sequence of datasets xt P r˘Bs
nt with bounded features ft

and suppose we set Laplace priors µt,i “ µ xvt,i,fty
φt,i

, 1
φt,i

via two DP-FTRL algorithms applied separately

to the variables vi and φi of the losses `xtpxvi, fty, φiq with budgets ε1

2 , with respective step-sizes

Θ̃
´

b

ε1

σ2
minT

a

m
d

¯

and Θ̃

ˆc

ε1
?
m

σ2
minσ

2
maxT

˙

. This is pε1, δ1q-DP and w.h.p. has regret

1

T

T
ÿ

t“1

Uxtpµtq ´ min
wiPr˘Bs

d

σiPrσmin,σmaxs

1

T

T
ÿ

t“1

Uxtpµxwi,fty,σiq “ Õ

¨

˝

d
3
4 ` σmax

σmin

d

m

ε1T

c

m log
2

δ1

˛

‚ (27)

Thus we can do as well as any sequence of Laplace priors µt with locations determined by a
fixed linear map from ft, up to a term that decreases at rate Õp 1?

T
q. Furthermore, running quantile

release with budget ε´ ε1 ensures pε, δ1q-DP for each dataset xt. Note that using different step-sizes
allows us to separate the difficulty of learning a d-dimensional linear map from the difficulty of
learning a scale parameter of magnitude at most σmax.

Unfortunately, DP-FTRL is too noisy to learn competitive priors, except with a lot of stationary
data (c.f. Fig. 4 (left)). One issue is that its DP guarantee is too strong, as it it allows swapping
out the entire dataset xt rather than a single entry. It is unclear if a better sensitivity is possible
for Uxt , as changing an entry can flip the sign of the gradient while preserving magnitude. We show

(c.f. Lem. 6.1) that it is possible for the ε-dependent bound U
pεq
xt over piecewise-constant priors—

remarkably sensitivity decreases with ε—but that upper bound is non-convex for location-scale
families, which are preferable for model learning.

Our second solution involves recognizing that U
pqq
xt depends only on the optimal interval

rxtrtqnus,xtrtqnu`1sq, whose location and size we have (public) estimates for: the former via the
quantile estimate ot and the size is lower-bounded by the underlying data discretization, which
we have access to in-practice (e.g. age is reported in years, bicycle trip length in seconds). We

use this information to construct proxy losses ˆ̀pqq
ot pxv, fty, φq, which do not depend on xt and so be

learned with (standard) OCO. As our DP-FTRL analysis again showed the importance of different
step-sizes, we again use the COCOB optimizer here.
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Figure 5: Time-averaged performance of the sequential release of nine quantiles on the Synthetic
(left) and CitiBike (right) tasks.

We evaluate sequential release on three online tasks, each consisting of a sequence of datasets
needing quantiles:

1. Synthetic: each dataset is generated such that the quantiles are fixed linear functions of a
random Gaussian feature vector, plus noise.

2. CitiBike: the data are the lengths of a day’s bicycle trips, with the date and NYC weather
information features.

3. BBC: the data are the Flesch readability scores of the comments on a headline posted to
Reddit’s worldnews forum, with date and headline text information features.

In addition to the proxy approach, which we call PubProx, we evaluate static priors—the uniform,
Cauchy, and half-Cauchy (if nonnegative)—and an approach we call PubPrev, which uses a Laplace
prior centered around the previous step’s released quantile. Note that using the Uniform is equivalent
to ApproximateQuantiles (AQ). For both PubProx and PubPrev we ensure robustness by mixing
with a Cauchy (or half-Cauchy, if nonnegative) distribution with coefficient 0.1; this nearly always
improves performance for these methods, likely by ensuring their training data is not too noisy. To see
its effectiveness, note how in Figure 4 (right) both augmented methods are almost always better when
made robust, especially PubPrev; in fact, non-robust PubPrev is unable to do better than Uniform
after around day 1600, when the start of the COVID-19 pandemic significantly affects bicycle trips.

Our main comparisons is time-aggregated performance as a function of ε (c.f. Figs. 5 and 6). All
except perhaps Synthetic demonstrate significant improvement by our methods over the Uniform
(AQ) baseline, especially at small ε. On Synthetic and CitiBike, both tasks with features for which a
linear model should provide some benefit, we see in Figure 5 that PubProx is indeed the best across
all except perhaps the lowest privacy settings. For BBC, Figure 6 reveals a large difference between
mean and median performance (note the difference in y-axis scales), with PubProx doing best for
the typical headline but the Cauchy doing better on-average due to better performance on headlines
with many comments. The result suggests that in highly noisy settings, the learning-based scheme
should help, but it might not overcome the robustness of a static Cauchy prior in-expectation.
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Figure 6: Time-aggregated mean (left) and median (right) performance of sequential release of
nine quantiles on the BBC task.

Overall, the results demonstrate the strength of the Cauchy and half-Cauchy priors, both as un-
bounded substitutes for the Uniform and as a means of robustifying learning-augmented algorithms.
They also demonstrate the utility of our upper bound in providing an objective for learning, albeit
using proxy data rather the DP online learning: PubProx usually does better than PubPrev despite us-
ing the same information. Overall, PubProx performs the best at most privacy levels in all evaluation
settings (Synthetic, CitiBike, and BBC) except when the mean is used as the metric for BBC (Fig. 6,
left), where it does almost as well as the best. Narrowing the performance gap with non-private OCO

(c.f. Fig. 4 (left), where we run COCOB directly on `
pqq
xt )—remains an important research direction.

8 Conclusion

Our work introduces the framework of private algorithms with private predictions, an application of
the algorithms with predictions setup to DP methods. We provide extensive evidence of its utility as
a way of integrating external information into privacy-preserving algorithms. In particular, we show
how it informs the design of methods that are robust to poor predictions and of learning algorithms
for obtaining good predictions from data. Finally, we demonstrate how combining optimization with
learning-augmented private algorithms can be used to significantly improve the quality of released
statistics in-practice. As a result, we believe these methods hold great promise for reducing error
while preserving privacy on practical, real-world problems.

Beyond the current work, we believe this way of studying DP methods is highly applicable and
will see a great deal of future work in finding new applications for incorporating predictions or
improving the approaches described here. By conducting a fine-grained analysis of DP algorithms
beyond their default parameterizations, it also is highly likely to lead to significant contributions
even in the prediction-free setting, as exemplified by our guarantees for unbounded-domain quantile
release and improved bounds for trace-sensitive covariance estimation. Some specific areas to explore
include other forms of iterative data analysis beyond MWEM [34, 35] and other important dataset
statistics [12]. Another important direction is that of learning: can DP online convex optimization
be made useful for the purpose of learning predictions, or can guarantees be shown for our alternative
of using public proxies?
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A Quantile release

A.1 Section 4.1 details

The base measure µ of DP mechanisms such as the exponential is the starting point of many
approaches to incorporating external information, especially ones focused on Bayesian posterior
sampling [25, 32, 67]; while it is also our approach to single-quantile estimation with predictions, a
key difference here is the focus on utility guarantees depending on both the prediction and instance,
which is missing from this past work. In the quantile problem, given a quantile q and a sorted
dataset x P Rn of n distinct points, the goal is to release a number o that upper bounds exactly
tqnu of the entries. A natural error metric, Gapqpx, oq, is the number of entries between the released
number o and tqnu, and we can show that prediction-dependent bound using astraightforward
application of EM with utility ´Gapq:

Lemma A.1. Releasing o P R w.p. 9 expp´εGapqpx, oq{2qµpoq is ε-DP, and w.p. 1´ β

Gapqpx, oq ď
2

ε

ˆ

log
1

β
´ log Ψ

pq,εq
x pµq

˙

ď
2

ε

ˆ

log
1

β
´ log Ψ

pqq
x pµq

˙

(28)

where Ψ
pq,εq
x pµq “

řn
i“0 expp´εGapqpx, Iiq{2qµpIiq “

ş

expp´εGapqpx, oq{2qµpoqdo is the inner

product between µ and the exponential score while Ψ
pqq
x pµq “ µpItqnuq is the measure of the optimal

interval (note maxk uqpx, Ikq “ ´Gapqpx, Itqnuq “ 0 and so Ψ
pqq
x pµq ď Ψ

pq,εq
x pµq @ ε ą 0).

Proof. ε-DP follows from uq having sensitivity one and the guarantee of EM with base measure
µ [58, Theorem 6]. For the error, since we sample an interval Ik and then sample o P Ik we have

PrtGapqpx, oq ě γu “ Prtuqpx, Ikq ď ´γu “
n
ÿ

j“0

Prtk “ ju1uqpx,Ijqď´γ

ď

n
ÿ

j“0

expp´ εγ
2 qµpIjq

řn
i“0 expp ε2uqpx, IiqqµpIiq

ď
expp´ εγ

2 q

Ψ
pq,εq
x pµq

(29)

The result follows by substituting β for the failure probability and solving for γ.

We can also analyze the error metrics in this bound for specific measures µ. In particular, if
the points are in a bounded interval pa, bq and we use the uniform measure µpoq “ 1oPpa,bq{pb´ aq

then Ψ
pq,εq
x pµq ě ψx

b´a , where ψx “ mink xrk`1s ´ xrks, and we exactly recover the standard bound

of 2
ε log b´a

βψx
, e.g. the one in Kaplan et al. [42, Lemma A.1] (indeed their analysis implicitly uses

this measure). However, our approach also allows us to remove the boundedness assumption, which
itself can be viewed as a type of prediction, as one needs external information to assume that
the data, or at least the quantile, lies within the interval pa, bq. Taking this view, we can use the
prediction to set the location ν P R and scale σ ą 0 of a Cauchy prior µν,σpoq “ σ{pπpσ2`po´ νq2qq
without committing to pa, bq actually containing the data. Since we know that the optimal interval
pxrtqnus,xrtqnu`1ss is a subset of pa`b2 ˘Rq for some R ą 0, setting ν “ a`b

2 and σ “ b´a
2 yields

Ψ
pqq
x pµν,σq ě

σ

π

xrtqnu`1s ´ xrtqnus

σ2 `maxkPttqnu,tqnu`1upν ´ xrksq2
ě
σ

π
min
k

xrk`1s ´ xrks

σ2 `R2
ě

2pb´ aqψx{π

pb´ aq2 ` 4R2 (30)

If R “ b´a
2 , i.e. we get the interval containing the data correct, then substituting the above into

Lemma A.1 recovers the guarantee of the uniform prior up to an additive factor 2
ε log π. However,
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whereas for the uniform prior we have no performance guarantees if the interval is incorrect, using
the Cauchy prior the performance degrades gracefully as the error (R) grows. While this first result
can be viewed as designing a better prediction-free algorithm, it can also be viewed as making more
robust use of the external information about the interval containing the data.

A.1.1 Multiple quantile release using multiple priors

To estimate m ą 1 quantiles q1, . . . , qm at once, we adapt the recursive approach of [42], whose
method ApproximateQuantiles implicitly constructs a binary tree with a quantile qi at each node
and uses the exponential mechanism to compute the quantile q̃i “ pqi ´ qiq{pqi ´ qiq of the dataset

x̂i of points in the original dataset x restricted to the interval pâi, b̂iq; here q
i
ă qi and qi ą qi are

quantiles appearing earlier in the tree whose respective estimates âi and b̂i determine the sub-interval
(if there is no earlier quantile on the left and/or right of qi we use q

i
“ 0, âi “ a and/or qi “ 1, b̂i “ b).

Because each datapoint only participates in Oplog2mq exponential mechanisms, the approach is
able to run each mechanism with budget Ωpε{ log2mq and thus only suffer error logarithmic in the
number of quantiles m, a significant improvement upon running one EM with budget ε{m on the
entire dataset for each quantile, which has error Opmq in the number of quantiles.

We can apply prior-dependent guarantees to ApproximateQuantiles—pseudocode for a gen-
eralized version of which is provided in Algorithm 5—by recognizing that implicitly the method
assigns a uniform prior µi to each quantile qi and then running EM with the conditional prior µ̂i
restricted to the interval râi, b̂is determined by earlier quantiles in the binary tree. An extension of
the argument in Equation 29 (c.f. Lemma A.2) then yields a bound on the error of the estimate
oi returned for quantile qi in terms of the prior-EM inner-product computed with this conditional
prior µ̂i over the subset x̂i:

PrtGapqipx, oiq ě γu ď
exp

`

εi
2 pγ̂i ´ γq

˘

Ψ
pq̃i,εiq
x̂i

pµ̂iq
for γ̂i “ p1´ q̃iqGapq

i
px, âiq` q̃i Gapqipx, b̂iq (31)

Note that the error is offset by a weighted combination γ̂i of the errors of the estimates of quantiles
earlier in the tree. Controlling this error allows us to bound the maximum error of any quantile via
the harmonic mean of the inner products between the exponential scores and conditional priors:

Lemma A.2. Algorithm 5 with K “ 2 and εi “ ε{rlog2ms @ i is ε-DP and w.p. ě 1´ β has

max
i

Gapqipx, oiq ď
2

ε
rlog2ms2 log

m

βΨ̂
pεq
x

for Ψ̂
pεq
x “

˜

m
ÿ

i“1

1{m

Ψ
pq̃i,εiq
x̂i

pµ̂iq

¸´1

(32)

Proof. The privacy guarantee follows as in [42, Lemma 3.1]. Setting the above probability bound (31)

to βΨ̂
pεq
x

mΨ
pεiq
q̃i
px̂i,µ̂iq

for each i we have w.p. ě 1´ β that Gapqipx, oiq ď
2
ε̄ log m

βΨ̂
pεq
x

` γ̂i @ i. Now let ki

be the depth of quantile qi in the tree. If ki “ 1 then i is the root node so γ̂i “ 0 and we have
Gapqipx, oiq ď

2
ε̄ log m

βΨ̂
pεq
x

. To make an inductive argument, we assume Gapqipx, oiq ď
2k
ε̄ log m

βΨ̂pεq
@ i

s.t. ki ď k, and so for any i s.t. ki “ k ` 1 we have that

Gapqipx, oiq ď
2

ε̄
log

m

βΨ̂
pεq
x

` p1´ q̃iqGapq
i
px, âiq ` q̃i Gapqipx, b̂iq ď

2pk ` 1q

ε̄
log

m

βΨ̂
pεq
x

(33)

Thus Gapqipx, oiq ď
2ki
ε̄ log m

βΨ̂
pεq
x

@ i, so using ki ď rlog2ms and ε̄ “ ε
rlog2 ms

yields the result.
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Setting µ̂i to be uniform on râi, b̂is exactly recovers both the algorithm and guarantee of [42,
Theorem 3.3]. As before, we can also extend the algorithm to the infinite interval:

Corollary A.1. If all priors are Cauchy with location a`b
2 and scale b´a

2 and the data lies in the

interval pa`b2 ˘Rq then w.p. ě 1´ β the maximum error is at most 2
ε rlog2ms2 log

ˆ

πm
b´a` 4R2

b´a

2βψx

˙

.

However, while this demonstrates the usefulness of Lemma A.2 for obtaining robust priors on

infinite intervals, the associated prediction measure Ψ̂
pεq
x is imperfect because it is non-deterministic:

its value depends on the random execution of the algorithm, specifically on the data subsets x̂i
and priors µ̂i, which for i not at the root of the tree are affected by the DP mechanisms of i’s
ancestor nodes. In addition to not being given fully specified by the prediction and data, this makes
Ψ̂pεq difficult to use as an objective for learning. A natural more desirable prediction metric is the
harmonic mean of the inner products between the exponential scores and original priors µi over the
original dataset x, i.e. the direct generalization of our approach for single quantiles.

Unfortunately, the conditional restriction of µi to the interval râi, b̂is removes the influence of
probabilities assigned to intervals between points not in this interval. To solve this, we propose a
different edge-restriction of µi that assigns probabilities µipp´8, âiqq and µippb̂i,8qq of being outside
the interval râi, b̂is to atoms on its edges âi and b̂i, respectively. Despite not using any information
from points outside x̂i, this approach puts probabilities assigned to intervals outside râi, b̂is to the
edge closest to them, allowing us to extend the previous probability bound (31) to depend on the
original prior-EM inner-product (c.f. Lemma A.5):

PrtGapqipx, oiq ě γu ď exppεpγ̂i ´ γ{2qq{Ψ
pqi,εiq
x pµiq (34)

However, the stronger dependence of this bound on errors γ̂i earlier in the tree lead to an Õpφlog2mq “

Opm0.7q dependence on m, where φ “ 1`
?

5
2 is the golden ratio:

Theorem A.1. If the quantiles are uniform negative powers of two then Algorithm 5 with K “ 2,
edge-based prior adaptation, and εi “ ε{rlog2pm` 1qs @ i is ε-DP and w.p. ě 1´ β has

max
i

Gapqipx, oiq ď
2

ε
φlog2pm`1qrlog2pm` 1qs log

m

βΨ
pεq
x

for Ψ
pεq
x “

˜

m
ÿ

i“1

1{m

Ψ
pqi,εiq
x pµiq

¸´1

(35)

Proof. Since q̃i “ 1{2 @ i, setting the new probability bound equal to βΨ
pεq
x

mΨ
pqiεiq
x pµiq

yields that w.p.

ě 1´ β

Gapqipx, oiq ď
2

ε̄
log

m

βΨ
pεq
x

` 2γ̂i “
2

ε̄
log

m

βΨ
pεq
x

`Gapq
i
px, âiq `Gapqipx, b̂iq @ i (36)

If for each k ď rlog2ms we define Ek to be the maximum error of any quantile of at most depth k
in the tree then since one of q

i
and qi is at depth at least one less than qi and the other is at depth

at least two less than qi we have Ek ď
2Ak
ε̄ log m

βΨ
pεq
x

for recurrent relation Ak “ 1` Ak´1 ` Ak´2

with A0 “ 0 and A1 “ 1. Since Ak “ Fk`1 ´ 1 for Fibonacci sequence Fj “
φj´p1´φqj

?
5

, we have

max
i

Gapqipx, oiq “ max
k

Ek ď
2φrlog2pm`1qs`1

ε̄
?

5
log

m

βΨ
pεq
x

“
2φrlog2pm`1qs`1

ε
?

5
rlog2pm` 1qs log

m

βΨ
pεq
x
(37)
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Thus while we have obtained a performance guarantee depending only on the prediction and the

data via the harmonic mean Ψ
pεq
x of the true prior-EM inner-products, the dependence on m is now

polynomial. Note that it is still sublinear, which means it is better than the naive baseline of running
m independent exponential mechanisms. Still, we can do much better—in-fact asymptotically better
than any power of m—by recognizing that the main issue is the compounding error induced by
successive errors to the boundaries of sub-intervals. We can reduce this by reducing the depth of the
tree using a K-ary rather than binary tree and instead paying K´1 times the privacy budget at each
depth in order to naively release values for K´1 quantiles. This can introduce out-of-order quantiles,
but by Lemma A.6 swapping any two out-of-order quantiles does not increase the maximum error
and so this issue can be solved by sorting the K ´ 1 quantiles before using them to split the data.
We thus have the following prediction-dependent performance bound for multiple quantiles:

Theorem A.2. If we run Algorithm 5 with K “ rexpp
a

log 2 logpm` 1qqs, edge-based adap-
tation, and εi “

ε̄
kpi

for some power p ą 1, ki the depth of qi in the K-ary tree, and ε̄ “

ε
K´1

´

řrlogKpm`1qs
k“1

1
kp

¯´1
, then the result satisfies ε-DP and w.p. ě 1´ β we have

max
i

Gapqipx, oiq ď
2π2

ε
exp

´

2
a

logp2q logpm` 1q
¯

log
m

βΨ
pεq
x

(38)

if p “ 2 and more generally maxi Gapqipx, oiq ď
cp
ε exp

´

2
a

logp2q logpm` 1q
¯

log m

βΨ
pεq
x

, where cp

depends only on p.

Proof. The privacy guarantee follows as in [42, Lemma 3.1] except before each split we compute
K ´ 1 quantiles with K ´ 1 times less budget. As in the previous proof, we have w.p. ě 1´ β that

Gapqipx, oiq ď
2

εi
log

m

βΨ
pεq
x

`2γ̂i “
2k2

i

ε̄
log

m

βΨ
pεq
x

`2p1´ q̃iqGapq
i
px, âiq`2q̃i Gapqipx, b̂iq @ i (39)

If for each k ď rlogKpm ` 1qs we define Ek to be the maximum error of any quantile of at most
depth k in the tree then since both q

i
and qi are at depth at least one less than qi we have

Ek ď
2Ak
ε̄ log m

βΨ
pεq
x

, where Ak “ kp ` 2Ak´1 and A1 “ 1. For the case of p “ 2, Ak ď 6 ¨ 2k and

1{ε̄ “ K´1
ε

řrlogKpm`1qs
k“1

1
k2 ď

π2

6ε pK ´ 1q so we have that

max
i

Gapqipx, oiq “ max
k

Ek ď
12

ε̄
2rlogKpm`1qs log

m

βΨ
pεq
x

ď
2π2

ε
pK ´ 1q2rlogKpm`1qs log

m

βΨ
pεq
x

(40)

Substituting K “ rexpp
a

log 2 logpm` 1qqs and simplifying yields the result. For p ą 1, Ak ď
2k´2

`

2` Φ
`

1
2 ,´p, 2

˘˘

, where Φ is the Lerch transcendent, and 1{ε̄ ď K´1
ε ζppq, where ζ is the

Riemann zeta function. Therefore

max
i

Gapqipx, oiq “ max
k

Ek ď
2rlogKpm`1qs

2ε̄

ˆ

2` Φ

ˆ

1

2
,´p, 2

˙˙

log
m

βΨ
pεq
x

ď
cp
ε
pK ´ 1q2rlogKpm`1qs log

m

βΨ
pεq
x

(41)

for cp “
`

1` Φ
`

1
2 ,´p, 2

˘

{2
˘

ζppq.
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Similarly to Theorem A.1, the proof establishes a recurrence relationship between the maximum
errors at each depth. Note that in addition to the K-ary tree this bound uses depth-dependent
budgeting to remove a Oplog2mq-factor; the constant depending upon the parameter p ą 1 of
the latter has a minimum of roughly 8.42 at p « 1.6. As discussed before, the new dependence

Õ
´

exp
´

2
a

logp2q logpm` 1q
¯¯

on m is sub-polynomial, i.e opmαq @ α ą 0. While it is also super-

polylogarithmic, its shape for any practical value of m is roughly Oplog2
2mq, making the result of

interest as a justification for the negative log-inner-product performance metric.

A.1.2 Experimental details

For the experiments in Section 4.1, specifically Figure 3, we evaluate three variants of the algorithm
on data drawn from a standard Gaussian distribution and from the Adult “age” dataset [47]. In both
cases we use 1000 samples and run each experiment 40 times, reporting the average performance.
As we do for all datasets, we use reasonable guesses of mean, scale, and bounds on each dataset to
set priors. As in this section we report the Uniform, we need to specify its range; for Gaussian we
use r´10, 10s, while for “age” we use r10, 120s.

The original AQ algorithm of Kaplan et al. [42] is now fully specified. We test two variants of our
K-ary modification: one with edge-based adaptation, and the other using the original conditional
adaptation. For both cases we set K as a function of m according to the formula in Theorem 4.3,
and we set the power p of the depth-dependent budget discounting to 1.5, which is close to the
theoretically optimal value of around 1.6 (c.f. Thm A.2).

A.2 Additional proofs

Lemma A.3. In Algorithm 5, for any i P rms and γ̂i “ p1 ´ q̃iqGapq
i
px, âiq ` q̃i Gapqipx, b̂iq we

have

1. Gapq̃ipx̂i, oq ď Gapqipx, oq ` γ̂i @ o P R

2. Gapqipx, oq ď Gapq̃ipx̂i, oq ` γ̂i @ o P râi, b̂is

Proof. For o P râi, b̂is we apply the triangle inequality twice to get

Gapq̃ipx̂i, oq “ | max
x̂rjsăo

j ´ tq̃in̂iu|

“ | max
x̂rjsăo

j ` max
xrjsăâi

j ´ tqinu` tqinu´ max
xrjsăâi

j ´ tq̃in̂iu|

ď Gapqipx, oq `

ˇ

ˇ

ˇ

ˇ

ˇ

tq̃iptqinu´ tq
i
nuqu` tq

i
nu´ max

xrjsăâi
j ´ tq̃ip max

xrjsăb̂i

j ´ max
xrjsăâi

jqu

ˇ

ˇ

ˇ

ˇ

ˇ

ď Gapqipx, oq ` p1´ q̃iqGapq
i
px, âiq ` q̃i Gapqipx, b̂iq

(42)

and again to get

Gapqipx, oq “ | max
xrjsăo

j ´ tqinu|

“ | max
x̂rjsăo

j ` max
xrjsăâi

j ´ tq̃in̂iu` tq̃in̂iu´ tqinu|

ď Gapq̃ipx̂i, oq `

ˇ

ˇ

ˇ

ˇ

ˇ

max
xrjsăâi

j ´ tq̃ip max
xrjsăb̂i

j ` max
xrjsăâi

jqu´ tq̃iptqinu´ tq
i
nuqu´ tq

i
nu

ˇ

ˇ

ˇ

ˇ

ˇ

ď Gapq̃ipx̂i, oq ` p1´ q̃iqGapq
i
px, âiq ` q̃i Gapqipx, b̂iq

(43)
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For o ă âi we use the fact that maxxrjsăo j ď maxxrjsăâi j and the triangle inequality to get

Gapq̃ipx̂i, oq “ tq̃in̂iu

“ tq̃ip max
xrjsăb̂i

j ´ max
xrjsăâi

jqu

ď tq̃i max
xrjsăb̂i

ju` tp1´ q̃iq max
xrjsăâi

ju´ max
xrjsăo

j

“ tq̃i max
xrjsăb̂i

ju` tp1´ q̃iq max
xrjsăâi

ju´ max
xrjsăo

j ` tqinu| ´ tq̃iptqinu´ tq
i
nuqu´ tq

i
nu

ď Gapqipx, oq ` p1´ q̃iqGapq
i
px, âiq ` q̃i Gapqipx, b̂iq

(44)

For o ą b̂i we use the fact that maxxrjsăb̂i
j ď maxxrjsăo j and the triangle inequality to get

Gapq̃ipx̂i, oq “ tp1´ q̃iqn̂iu

“ tp1´ q̃iqp max
xrjsăb̂i

j ´ max
xrjsăâi

jqu

ď max
xrjsăo

j ´ tq̃i max
xrjsăb̂i

j ´ tp1´ q̃iq max
xrjsăâi

j

“ max
xrjsăo

j ´ tq̃i max
xrjsăb̂i

j ´ tp1´ q̃iq max
xrjsăâi

j ´ tqinu` tq̃iptqinu´ tq
i
nuqu` tq

i
nu

ď Gapqipx, oq ` p1´ q̃iqGapq
i
px, âiq ` q̃i Gapqipx, b̂iq

(45)

Lemma A.4. For any γ ą 0 the estimate oi of the quantile qi by Algorithm 5 satisfies

PrtGapqipx, oiq ě γu ď
exp pεipγ̂i ´ γq{2q

Ψ
pq̃i,εiq
x̂i

pµ̂iq
(46)

Proof. We use ki to denote the interval Î
pjq
k sampled at index i in the algorithm and note that oi

corresponds to the released number o at that index. Since oi P râi, b̂is, applying Lemma A.3 yields

PrtGapqipx, oiq ě γu “
n̂i
ÿ

j“0

Prtki “ ju1
Gapqi px,Î

piq
j qěγ

“

ni
ÿ

j“0

expp´εGapq̃ipx̂i, Î
piq
j q{2qµ̂ipÎ

piq
j q1Gapqi px,Î

piq
j qěγ

řn̂i
l“0 exppεuq̃ipx̂i, Î

piq
l q{2qµ̂ipÎlq

ď
exppεγ̂i{2q

Ψ
pq̃i,εiq
x̂i

pµ̂iq

ni
ÿ

j“0

expp´εGapqipx, Î
piq
j q{2qµ̂ipÎ

piq
j q1Gapqi px,Î

piq
j qěγ

ď
exppεpγ̂i ´ γq{2q

Ψ
pq̃i,εiq
x̂i

pµ̂iq

(47)

Lemma A.5. For any γ ą 0 the estimate oi of the quantile qi by Algorithm 5 with edge-based prior
adaptation satisfies

PrtGapqipx, oiq ě γu ď
exppεpγ̂i ´ γ{2qq

Ψ
pqi,εiq
x pµiq

(48)
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Proof. Applying Lemma A.3 yields the following lower bound on Ψ
pεiq
q̃i
px̂i, µ̂iq:

n̂i
ÿ

l“0

exppεuq̃ipx̂i, Î
piq
l q{2qµ̂ipÎ

piq
l q “ exppεuq̃ipx̂i, Î

piq
0 q{2qµipp´8, âisq ` exppεuq̃ipx̂i, Î

piq
n̂i
q{2qµiprb̂i,8qq

`

n̂i
ÿ

l“0

exppεuq̃ipx̂i, Î
piq
l q{2qµipÎlq

“

maxxrjsăâi
j

ÿ

l“0

expp´εGapq̃ipx̂i, Il X p´8, âisq{2qµipIl X p´8, âisq

`

n
ÿ

l“maxxrjsăb̂i
j

expp´εGapq̃ipx̂i, Il X rb̂i,8qq{2qµipIl X rb̂i,8qq

`

maxxrjsăb̂i
j

ÿ

l“maxxrjsăâi
j

expp´εGapq̃ipx̂i, Il X râi, b̂isqµipIl X râi, b̂isq

ě Ψ
pqi,εiq
x pµiq expp´εγ̂i{2q

(49)

Substituting into Lemma A.2 yields the result.

Lemma A.6. Suppose q0 ă q1 are two quantiles and o0 ą o1. Then

max
i“0,1

Gapqipx, oiq ě max
i“0,1

Gapqipx, o1´iq (50)

Proof. We consider four cases. If tq0|x|u ď maxxrjsăo1 j and tq1|X|u ď maxxrjsăo0 j then

tq0|x|u ď minttq1|x|u, max
xrjsăo1

ju ď maxttq1|x|u, max
xrjsăo1

ju ď max
xrjsăo0

j (51)

and so
max
i“0,1

Gapqipx, oiq “ max
xrjsăo0

j ´ tq0|x|u ě max
i“0,1

GapqipX, oi´1q (52)

If tq0|X|u ď maxxrjsăo1 j and tq1|x|u ą maxxrjsăo0 j then

tq0|x|u ď max
xrjsăo1

j ď max
xrjsăo0

j ă tq1|x|u (53)

and so both improve after swapping. If tq0|x|u ą maxxrjsăo1 j and tq1|x|u ą maxxrjsăo0 j then

max
xrjsăo1

j ď minttq0|x|u, max
xrjsăo0

ju ď maxttq0|x|u, max
xrjsăo0

ju ď tq1|x|u (54)

and so
max
i“0,1

Gapqipx, oiq “ max
xrjsăo1

j ´ tq1|x|u ě max
i“0,1

Gapqipx, oi´1q (55)

Finally, if tq0|x|u ą maxxrjsăo1 j and tq1|x|u ď maxxrjsăo0 j then

max
xrjsăo1

j ă tq0|x|u ď tq1|x|u ď max
xrjsăo0

j (56)

so swapping will make the new largest error for each quantile at most as large as the other quantile’s
current error.
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Algorithm 5: ApproximateQuantiles with predictions

Input: sorted unrepeated data x P pa, bqn, ordered quantiles q1, . . . , qm P p0, 1q,
priors µ1, . . . , µm : R ÞÑ Rě0, prior adaptation rule r P{conditional,edge},
privacy parameters ε1, . . . , εm ą 0, branching factor K ě 2
// runs single-quantile algorithm on datapoints x̂
Method quantile(x̂, q, ε, µ):

Output: o P pa, bq w.p. 9 expp´εGapqpx̂, oq{2qµpoq

Method recurse(j, q, q, â, b̂):

// determines K ´ 1 indices i whose quantiles to compute at this node

if |j| ě K then

i Ð
`

jrr|j|{Kss, ¨ ¨ ¨ , jrrpK´1q|j|{Kss

˘

else
i Ð j

// restricts dataset to the interval pâ, b̂q
ki Ð minxrksąâ k

ki Ð maxxrksăb̂
k

x̂i Ð

´

xrkis, ¨ ¨ ¨ ,xrkis

¯

// sets relative quantiles q̃i and restricts priors to the interval râ, b̂s
for j “ 1, . . . , |i| do

q̃irjs Ð pqirjs ´ qq{pq ´ qq

if r “ conditional then

µ̂irjspoq Ð
µirjs poq

µirjs prâ,b̂sq
1oPrâ,b̂s

else

µ̂irjspoq Ð µirjspoq1oPpâ,b̂q ` µirjspp´8, âsqδpo´ âq ` µirjsprb̂,8qqδpo´ b̂q

// computes K ´ 1 quantiles oi and sorts the results

oi Ð
`

quantile(x̂i, q̃ir1s , εir1s{|i|, µ̂ir1s) , ¨ ¨ ¨ , quantile(x̂i, q̃ir|i|s , εir|i|s{|i|, µ̂ir|i|s)
˘

oi Ðsort(oi)

// recursively computes remaining indices on the K intervals induced by oi

if |j| ă K then
o Ð oi

else

o Ð concat(recurse(
`

jr1s, ¨ ¨ ¨ , jrr|j|{Ks´1s

˘

, q, qir1s , â,or1s),
`

or1s
˘

)

for j “ 2, . . . , |i| do

o Ðconcat(o, recurse(
`

jrrpj´1q|j|{Ks`1s, ¨ ¨ ¨ , jrrj|j|{Ks´1s

˘

, qirj´1s
, qirjs ,orj´1s,orjs))

o Ðconcat(o,
`

orjs
˘

)

o Ð concat(o, recurse(
`

jrrpK´1q|j|{Ks`1s, ¨ ¨ ¨ , jr|j|s
˘

, qirK´1s
, q,orK´1s, b̂))

Output: o

Output: recurse(
`

1, ¨ ¨ ¨ ,m
˘

, 0, 1,´8,8)
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B Covariance estimation

B.1 Section 4.2 details

B.1.1 Sensitivity results

Lemma B.1. The eigenvalues Λ of XXT {n´W “ UΛUT for X P Rdˆn with 1-bounded columns
and symmetric W P Rdˆd has `1-sensitivity 2{n, as does its trace norm }Λ}1 “ }XXT {n´W}Tr.

Proof. Consider two datasets X, X̃ P Rdˆn that share the same first n´ 1 columns Z P Rdˆn´1 but
have different respective last columns x, x̃ P Rd. For any vector v P Rd we have

vT pXXT {n´Wqv “ vTZZTv{n` vTxxTv{n´ vTWv ě vT pZZT {n´Wqv (57)

so for ÛΛ̂ÛT “ ZZT {n´W we have

Λris ě Λ̂ris @ i P rds (58)

Thus
}Λ´ Λ̂}1 “ TrpXXT {n´Wq ´ TrpZZT {n´Wq “ TrpxxT {nq ď 1{n (59)

The same argument holds when replacing X by X̃, so the result for the eigenvalues follows by the
triangle inequality.

For the trace norm we have that

ˇ

ˇ}XXT {n´W}Tr ´ }ZZT {n´W}Tr

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

i“1

|Λris| ´ |Λ̂ris|

ˇ

ˇ

ˇ

ˇ

ˇ

ď

d
ÿ

i“1

||Λris| ´ |Λ̂ris||

ď

d
ÿ

i“1

|Λris ´ Λ̂ris| ď 1{n

(60)

where the second inequality holds trivially when Λris and Λ̂ris have the same sign and otherwise the

latter is negative (58) so we have ||Λris|´|Λ̃ris|| “ |Λris` Λ̃ris| ď |Λris´ Λ̃ris|, and the third is by Equa-

tion 59. This also holds when replacing X by X̃, so the result follows by the triangle inequality.

Claim B.1. If ak, bk ě ck @ k P rds then
řd
k“1pak ´ bkq

2 ď

´

řd
k“1 ak ´ ck

¯2
`

´

řd
k“1 bk ´ ck

¯2
.

Proof. Note that this result is an easy corollary of [27, Fact 1], but for completeness:

˜

d
ÿ

k“1

ak ´ ck

¸2

`

˜

d
ÿ

k“1

bk ´ ck

¸2

“

d
ÿ

k“1

pak ´ ckq
2 ` pak ´ ckq

ÿ

j‰k

aj ´ cj `
d
ÿ

k“1

pbk ´ ckq
2 ` pbk ´ ckq

ÿ

j‰k

bj ´ cj

ě

d
ÿ

k“1

a2
k ´ 2akck ` c

2
k ` b

2
k ´ 2bkck ` c

2
k

“

d
ÿ

k“1

pak ´ bkq
2 ` 2akbk ´ 2akck ´ 2bkck ` 2c2

k ě

d
ÿ

k“1

pak ´ bkq
2

(61)

where the first inequality follows because ak ´ ck, bk ´ ck ě 0 @ k and the second because the convex
function akbk´akck´2bkck`c

2
k attains its minimum over ck P p´8,mintak, bkus at mintak, bku.
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Lemma B.2. The `2-sensitivities of XXT {n´W and its eigenvalues Λ are both
?

2{n.

Proof. The first result follows directly by [12, Lemma 3.2] For the second, consider two datasets
X, X̃ P Rdˆn that share the same first n´ 1 columns Z P Rdˆn´1 but have different respective last
columns x, x̃ P Rd. Applying Claim B.1, Equation 58, and Equation 59 yields

}Λ´ Λ̃}2F “
d
ÿ

k“1

pΛris ´ Λ̃risq
2 ď

˜

d
ÿ

k“1

Λris ´ Λ̂ris

¸2

`

˜

d
ÿ

k“1

Λ̃ris ´ Λ̂ris

¸2

ď
1

n2
`

1

n2
“

2

n2
(62)

B.1.2 Proof of Lemma 4.1

Proof. Let C “ XXT {n. Then by triangle inequality and the orthonormality of Ũ we have

}C´W ´ ŨΛ̂ŨT }F “ }C´W ´ ŨΛ̂ŨT }F

“ }C´W ´ ŨΛŨT ´ ŨpΛ̂´ ΛqŨT }F

ď }C´W ´ ŨΛŨT }F ` }ŨpΛ̂´ ΛqŨT }F

ď

b

}C´W}2F ´ 2 TrppC´WqpŨΛŨT qq ` }ŨΛŨT }2F ` }z}2

“

g

f

f

e2
d
ÿ

j“1

Λ2
rjs ´ 2 TrpΛŨT pC´WqŨq ` }z}2

“

g

f

f

e2
d
ÿ

j“1

Λ2
rjs ´ 2

d
ÿ

j“1

ΛrjsŨ
T
rjspC´WqŨrjs ` }z}2

“

g

f

f

e2
d
ÿ

j“1

ΛrjspΛrjs ´ ŨT
rjspC´WqŨrjsq ` }z}2

(63)

For j P rds s.t. Λrjs ą 0 let uj “ arg max
}u}2“1,Ũrj:dsu“0

upC´Wqu. By the Courant-Fischer-Weyl

min-max principle we have that

Λrjs “ min
VPRpd´j`1qˆd

max
}u}2“1,Vu“0

uT pC´Wqu ď max
}u}2“1,Ũrj:dsu“0

uT pC´Wqu “ ujpC´Wquj (64)

Therefore

ŨT
rjspXXT ´WqŨrjs “ ŨT

rjspXXT ´W ` ZqŨrjs ´ ŨT
rjsZŨrjs

ě ŨT
rjspXXT ´W ` ZqŨrjs ´ ~Z~8

ě ujpC´W ` Zquj ´ ~Z~8

ě ujpC´Wquj ´ 2~Z~8 ě Λrjs ´ 2~Z~8

(65)

Similarly, for j P rds s.t. Λrjs ă 0 let uj “ arg min
}u}2“1,Ũr1:jsu“0

upC ´Wqu. By the Courant-

Fischer-Weyl min-max principle we have that

Λrjs “ max
VPRjˆd

min
}u}2“1,Vu“0

uT pC´Wqu ě min
}u}2“1,Ũr1:jsu“0

uT pC´Wqu “ ujpC´Wquj (66)
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Algorithm 6: SeparateCov with predictions (zCDP)

Input: data X P Rdˆn, symmetric prediction matrix W P Rdˆd, privacy parameter ρ ą 0
UΛUT Ð XXT {n´W
Λ̂ Ð Λ` diagpzq where z „ N p0d, 2

ρn2 q // add prediction noise to error eigenvalues

C̃ Ð XXT {n` Z for Zri,js “ Zrj,is „ N
´

0, 2
ρn2

¯

ŨΛ̃ŨT Ð C̃´W // get eigenvectors of noised prediction error

Output: Ĉ “ ŨΛ̂ŨT `W // combine to estimate XXT {n´W, then add W

Therefore

ŨT
rjspC´WqŨrjs “ ŨT

rjspC´W ` ZqŨrjs ´ ŨT
rjsZŨrjs

ď ŨT
rjspC´W ` ZqŨrjs ` ~Z~8

ď ujpC´W ` Zquj ` ~Z~8

ď ujpC´Wquj ` 2~Z~8 ď Λrjs ` 2~Z~8

(67)

Substituting the bounds (65) and (67) in for the appropriate j terms in the summation in Equation 63

yields }C´W ´ ŨΛ̂ŨT }F ď 2}z}2 ` 2
b

~Z~8
řd
j“1 |Λrjs| “ 2

´

}z}2 `
a

~Z~8}C´W}Tr

¯

.

B.2 zCDP guarantees for SeparateCov with predictions

Definition B.1 ([14]). Algorithm A is ρ-zCDP if DαpApXq||ApX̃qq ď ρα @ α ą 1 whenever X and
X̃ differ in a single element, where Dα is the α-Rényi divergence.

Theorem B.1 ([14]). If a query q : X ÞÑ Rd has `2-sensitivity maxX„X̃ }qpXq´ qpX̃q}
2
2 ď ∆ then

the Gaussian mechanism, which releases qpXq ` z for z „ N p0d, ∆2

2ρ q, is ρ-zCDP.

Theorem B.2. If X has columns bounded by 1 in `2-norm then Algorithm 6 is ρ-zCDP and w.p.
ě 1´ β

}Ĉ´XXT {n}2F ď Õ

˜

d

n2ρ
`
}XXT {n´W}Tr

n

d

d

ρ

¸

(68)

Proof. The privacy guarantee follows from the composition of two Gaussian mechanisms with the
sensitivities of Lemma B.2. The utility guarantee is due to substituting Gaussian concentration
from [27, Lemmas 6 & 7] into Lemma 4.1.

Corollary B.1. If X has columns bounded by 1 in `2-norm then Algorithm 6 with W “ 0dˆd
returns w.p. ě 1´ β an estimate Ĉ P Rdˆd satisfying

}Ĉ´XXT {n}2F ď Õ

˜

d

n2ρ
`min

cPR

}XXT {n´ cId}Tr

n

d

d

ρ

¸

(69)

Corollary B.2. Pick λ P p0, 1q and run Algorithm 6 with privacy p1´λqρ and symmetric prediction
matrix W if }XXT {n´W}Tr ` z ď }XXT }Tr{n and 0dˆd, where z „ N p0, 1

λρnq. This procedure is

ρ-zCDP, Õ
´ ?

d
n
?
ρ

´?
d{n`1{

?
n

?
ρ ` }XXT {n}Tr

¯¯

-robust and Õ
´ ?

d
n
?
ρ

´?
d{n`1{

?
n

?
ρ

¯¯

-consistent.

46



Proof. By Lemma B.2 the difference }XXT {n´W}Tr ´ }XXT {n}Tr has sensitivity 2{
?
n, so the

comparison of }XXT ´W}Tr ` z and }XXT {n}Tr is equivalent to using the Gaussian mechanism
with λρ-zCDP to estimate this difference and then taking the sign. Composing this with the privacy

guarantee of Theorem B.2 yields ρ-zCDP. Since Prt|z| ě 2
b

1
λρn log 2

β u ď β{2, the matrix Wz P

tW,0dˆdu passed to Algorithm 6 satisfies }XXT {n´Wz}Tr ď mint}XXT {n´W}Tr, }XXT {n}Tr`

2
b

1
λρn log 2

β w.p. ě 1 ´ β{2. Applying the utility guarantee of Theorem B.2 w.p. 1 ´ β{2 for

constant λ P p0, 1q yields the result.

B.3 IterativeEigenvectorSampling with predictions

Lemma B.3. Given a dataset X P Rdˆn with 1-bounded columns, any orthonormal basis P P

Rkˆd, and a symmetric matrix W P Rdˆd the queries uTPtXXT {n ´Wu`PTu and uTPtM ´

XXT {nuPTu—where tAu` denotes taking only the components of A with positive eigenvalues—have
sensitivity 2{n.

Proof. Consider two datasets X, X̃ P Rdˆn that share the same first n´ 1 columns Z P Rdˆn´1 but
have different respective last columns x, x̃ P Rd. Let P` and Q` P Rdˆd be projection matrices
removing the negative components of XXT ´W and ZZT ´W, respectively. Then we have

}tXXT {n´Wu` ´ tZZT {n´Wu`}2

“ }P`pXXT {n´WqP` ´Q`pZZT {n´WqQ`}2

“ max
}v}2“1

vTP`pZZT {n´WqP`v ` vTP`xxTP`v{n´ vTQ`pZZT {n´WqQ`v

ď 1{n` max
}v}2“1

vTQ`pZZT {n´WqQ`v ´ vTQ`pZZT {n´WqQ`v{n “ 1{n

(70)

where the second equality follows by (57) and the definition of the spectral norm. The same
argument holds when replacing X by X̃, so we can bound the sensitivity by the triangle inequality:

|uTPtXXT {n´Wu`PTu´ uTPtX̃X̃T {n´Wu`PTu|

ď }PptXXT {n´Wu` ´ tX̃X̃T {n´Wu`qPT }2

ď }tXXT {n´Wu` ´ tX̃X̃T {n´Wu`}2 ď 2{n

(71)

Similarly, for P´ and Q´ P Rdˆd the projection matrices removing the negative components of
XXT ´W and ZZT ´W, respectively, we have

}tW´XXT {nu` ´ tW ´ ZZT {nu`}2

“ }P´pW ´XXT {nqP´ ´Q´pW ´ ZZT {nqQ´}2

“ max
}v}2“1

vTQ´pW ´XXT {nqQ´v ` vTQ´xxTQ´v{n´ vTP´pW ´XXT {nqP´v

ď 1{n` max
}v}2“1

vTP´pW ´XXT {nqP´v ´ vTP´pW ´XXT {n´WqP´v “ 1{n

(72)

where the second equality follows by (57) and the definition of the spectral norm. The same
argument holds when replacing X by X̃, so as before we can obtain the sensitivity via the triangle
inequality.
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Algorithm 7: IterativeEigenvectorSampling with predictions

Input: data matrix X P Rdˆn, symmetric prediction W P Rdˆd, privacy parameters

ε
p˘1q
0 , . . . , ε

p˘1q
d

initialize Ĉ Ð W
for s,C P pp1, tXXT ´Wu`q, p´1, tW ´XXT u`qq do

// run IterativeEigenvectorSampling [4] on C, add sˆ the result to Ĉ
initialize C1 Ð C and P1 Ð Id
UΛUT Ð C // get eigenvalues of C
for i=1,. . . ,d do

λ
psq
i Ð Λris ` Lapp2{ε

psq
0 q

θ̂
psq
i Ð PT

i û
psq
i for û

psq
i sampled w.p. 9fCipuq “ exp

ˆ

ε
psq
i
4 uTCiu

˙

set Pi`1 P Rpd´iqˆd to be an orthonormal basis orthogonal to θ̂
psq
1 , . . . , θ̂

psq
i

Ci`1 Ð Pi`1CPT
i`1 P Rpd´iqˆpd´iq

Ĉ Ð Ĉ` s
řd
i“1 λ̂

psq
i θ̂

psq
i θ̂

psqT

i

Output: Ĉ

Theorem B.3. Algorithm 7 preserves

˜

ř

sPt˘1u

d
ř

i“0
ε
psq
i

¸

-DP and the output Ĉ satisfies w.p. ě 1´β

}XXT {n´ Ĉ}2F ď Õ

¨

˝

d

n

¨

˝

ÿ

sPt˘1u

1

ε
psq2

0 n
`

d
ÿ

i“1

|Λris|

ε
pSrisq

i

˛

‚

˛

‚ (73)

where Λris is the matrix of eigenvalues of XXT {n´W, Sris is the matrix of its signs, and Õ hides

logarithmic factors in d, }XXT {n´W}2, and β.

Proof. The privacy result follows from Lemma B.3 applied to Algorithm 7’s release of λ
psq
i and û

psq
i

using the Laplace and Exponential mechanisms, respectively, followed by basic composition. For
utility, since XXT {n´Ĉ “ XXT´W´Ĉ`W “ tXXT {n´Wu`´tĈ´Wu`´tW´XXT {nu``
tW´ Ĉu` we have by the triangle inequality, the fact that pa` bq2 ď 2pa2` b2q @ a, b P R, and the
utility guarantee (squared and normalized by n) of IterativEigenvectorSampling [4, Theorem 1]
applied to tXXT {n´Wu` and tW ´XXT {nu` that

}XXT {n´ Ĉ}2F ď 2}tXXT {n´Wu` ´ tĈ´Wu`}
2
F ` 2}tW ´XXT {nu` ´ tW ´ Ĉu`}

2
F

ď Õ

˜

d

˜

1

pε
p1q
0 nq2

`

d
ÿ

i“1

maxtΛris, 0u

ε
p1q
i n

`
1

pε
p´1q
0 nq2

`

d
ÿ

i“1

maxt´Λris, 0u

ε
p´1q
i n

¸¸

“ Õ

¨

˝d

¨

˝

ÿ

sPt˘1u

1

pε
psq
0 nq2

`

d
ÿ

i“1

|Λris|

ε
pSrisq

i n

˛

‚

˛

‚

(74)
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Corollary B.3. Suppose for s P t˘1u we set ε
psq
0 “ ε{4 and ε

psq
i “ ε

4d @ i P rds, where ε ą 0 is the

overall privacy budget. Then w.p. 1´ β the output Ĉ of Algorithm 7 satisfies

}XXT {n´ Ĉ}2F ď Õ
ˆ

d

εn

ˆ

1

εn
` d}XXT {n´W}Tr

˙˙

(75)

C Data release

Proof of Lemma 4.2. Follow the proof of the original [36] but replace Fact A.3 by Ψ0 ď DKLp
x
n ||wq,

upper bound the square of the result by twice the sum of the squares of the two terms, and obtain
guarantees w.p. ě 1´ β by solving 2m

|Q|c “ β for c and substituting the solution into the bound.

D Online learning

D.1 Online-to-batch conversion

Theorem D.1. Suppose an online algorithm sees a sequence `p¨; X1q, . . . , `p¨; XT q : Θ ÞÑ r0, Bs of
convex losses whose data X1, . . . ,XT are drawn i.i.d. from some distribution D, and let θ1, . . . , θT be

its predictions. If maxθPΘ
řT
t“1 `pθt; Xtq´`pθ; Xtq ď RT , θ̂ “ 1

T

řT
t“1 θt, and T “ Ω

´

Tα `
B2

α2 log 1
β1

¯

for Tα “ min2RTďTα T , then w.p. ě 1´ β1

EX„D`pθ̂; Xq ď min
θPΘ

EX„D`pθ; Xq ` α (76)

Proof. This is a formalization of a standard procedure; we follow the argument in [44, Lemma A.1].
Applying Jensen’s inequality, [17, Proposition 1], the assumption that regret is ď RT , and Hoeffding’s
inequality yields

EX„D`pθ̂; Xq ď
1

T

T
ÿ

t“1

EX„D`pθt; Xq ď
1

T

T
ÿ

t“1

`pθt; Xtq `B

c

2

T
log

2

β1

ď min
θPΘ

1

T

T
ÿ

t“1

`pθ; Xtq `
RT
T
`B

c

2

T
log

2

β1

ď min
θPΘ

EX„D`pθ; Xq `
RT
T
` 2B

c

2

T
log

2

β1

(77)

w.p. ě 1´ β1. Substituting the lower bound on T yields the result.

D.2 Negative log-inner-product losses

For functions of the form ftpµq “ ´ log
şb
a stpoqµpoqdo, [7] showed ÕpT 3{4q regret for the case

stpoq P t0, 1u @ o P ra, bs using a variant of exponentiated gradient with a dynamic discretization.
Notably their algorithm can be extended to (non-privately) learn ´ log Ψ˚q pxt, µq, since st in this
case is one on the optimal interval and zero elsewhere. However, the changing discretization and
dependence of the analysis on the range of st suggests it may be difficult to privatize their approach.
The discretized form ´ logxst,wy is more heavily studied, arising in portfolio management [21].
It enjoys the exp-concavity property, leading to Opd log T q regret using the EWOO method [37].
However, EWOO requires maintaining and sampling from a distribution defined by a product of inner
products, which is inefficient and similarly difficult to privatize. Other algorithms, e.g. adaptive
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FTAL [37], also attain logarithmic regret for exp-concave functions, but the only private variant
we know of is non-adaptive and only guarantees Op

?
T q-regret for non-strongly-convex losses [69].

The adaptivity, which is itself data-dependent, seems critical for taking advantage of exp-concavity.

Lemma D.1. If ftpµWq “ ´ log
řm
i“1

1{m
xst,i,Wrisy

for st,i P Rdě0 then }∇WftpµWq}1 ď d{γ @W P 4m
d

s.t. Wri,js ě γ{d @ i, j for some γ P p0, 1s.

Proof.

}∇WftpµWq}1 “
m
ÿ

i“1

}∇Wris
ftpµWq}1 “

˜

m
ÿ

i“1

1

xst,i,Wrisy

¸´1 m
ÿ

i“1

d
ÿ

j“1

st,irjs

xst,i,Wrisy
2

ď

˜

m
ÿ

i“1

1

xst,i,Wrisy

¸´1 m
ÿ

i“1

1

xst,i,Wris dWrisy
ď d{γ

(78)

where the first inequality follows by Sedrakyan’s inequality and the second by Wri,js ě γ{d.

D.2.1 Proof of Lemma 6.1 for m ą 1

Proof. Let x̃t be a neighboring dataset of xt constructed by adding or removing a single element,
and let Ũt be the corresponding loss function. We note that changing from xt to x̃t changes the
value of Gapqipxt, oq at any point o P ra, bs by at most ˘1 and so the value of the exponential score
at any point o P ra, bs is changed by at most a multiplicative factor expp´εi{2q in either direction.
Therefore

s̃t,irjs “

ż a` b´a
d
j

a` b´a
d
pj´1q

expp´εi Gapqipx̃t, oq{2qdo

P expp˘εi{2q

ż a` b´a
d
j

a` b´a
d
pj´1q

expp´εi Gapqipxt, oq{2qdo “ expp˘εi{2qst,irjs

(79)

where ˘ indicates the interval between values.

}∇WUtpWq ´∇WŨtpWq}F

“

g

f

f

f

e

m
ÿ

i“1

d
ÿ

j“1

¨

˝

˜

m
ÿ

i1“1

1

xst,i1 ,Wri1sy

¸´1
st,irjs

xst,i,Wrisy
2
´

˜

m
ÿ

i1“1

1

xs̃t,i1 ,Wri1sy

¸´1
s̃t,irjs

xs̃t,i,Wrisy
2

˛

‚

2

“

˜

m
ÿ

i1“1

1

xst,i1 ,Wri1sy

¸´1

g

f

f

f

e

m
ÿ

i“1

d
ÿ

j“1

¨

˝

st,irjs

xst,i,Wrisy
2
´

s̃t,irjs

xs̃t,i,Wrisy
2

řm
i1“1

1
xst,i1 ,Wri1sy

řm
i1“1

1
xs̃t,i1 ,Wri1sy

˛

‚

2

“

˜

m
ÿ

i1“1

1

xst,i1 ,Wri1sy

¸´1

g

f

f

f

e

m
ÿ

i“1

d
ÿ

j“1

s2
t,irjs

xWt,i,Wrisy
4

¨

˝1´
xgt,i,xrisy2

xs̃t,i,Wrisy
2

řm
i1“1

s̃t,irjs
xst,i1 ,Wri1sy

řm
i1“1

st,irjs
xs̃t,i1 ,Wri1sy

˛

‚

2

ď

˜

m
ÿ

i1“1

1

xst,i1 ,Wri1sy

¸´1 m
ÿ

i“1

d
ÿ

j“1

st,irjs

xst,i,Wrisy
2
|1´ κi,j | ď

d

γ
max
i,j
|1´ κi,j |

(80)
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where we have

κi,j “
xst,i,Wrisy

2

xs̃t,i,xrisy2

m
ř

i1“1

s̃t,irjs
xst,i1 ,Wri1sy

m
ř

i1“1

st,irjs
xs̃t,i1 ,Wri1sy

P
xst,i,Wrisy

2

xst,i,Wrisy
2 expp˘εiq

m
ř

i1“1

st,irjs expp˘
ε
i1
2
q

xst,i1 ,Wri1sy

m
ř

i1“1

st,irjs

xst,i1 ,Wri1sy expp˘
ε
i1
2
q

“ expp˘2 max
i
εiq

(81)

Substituting into the previous inequality and taking the minimum with the `1 bound on the gradient
of the losses from Lemma D.1 yields the result.

D.2.2 Proof of Theorem 6.2

Proof. For set of γ-robust priors ρ s.t. ρris “ mint1 ´ γ ` λ, 1uµris `
maxtγ´λ,0u

b´a and W P 4m
d s.t.

Wri,js “
b´a
d

şa` b´a
d
j

a` b´a
d
pj´1q

ρrispoqdo we can divide the regret into three components:

T
ÿ

t“1

U
pεq
xt pµWtq´U

pεq
xt pµq “

T
ÿ

t“1

U
pεq
xt pµWtq´U

pεq
xt pµWq`

T
ÿ

t“1

U
pεq
xt pµWq´U

pεq
xt pρq`

T
ÿ

t“1

U
pεq
xt pρq´U

pεq
xt pµq

(82)
The first summation is the regret of DP-FTRL with regularizer φ, which is strongly convex w.r.t. }¨}1.
The Gaussian width of its unit ball is 2

a

logpmdq, by Lemma D.1 the losses are d
γ -Lipschitz w.r.t.

} ¨ }1, and by Lemma 6.1 the `2-sensitivity is ∆2 “
d
γ mint2, eε̃m ´ 1u ď 2d

γ mint1, ε̃mu, so applying

Theorem 6.1 yields the bound m2 log d
η `

ηd2T
γ2

´

1`
´

4
?

log d` 2
b

2 log T
β1

¯

σ
a

rlog2 T s mint1, εu
¯

.

The second summation is a sum over the errors due to discretization, where we have

T
ÿ

t“1

U
pεq
xt pµWq ´ U

pεq
xt pρq “

T
ÿ

t“1

log
m
ÿ

i“1

xst,i,Wrisy
´1 ´ log

m
ÿ

i“1

1
şb
a expp´εi Gapqipxt, oq{2qρrispoqdo

ď

T
ÿ

t“1

m
ÿ

i“1

şb
a expp´ εi

2 Gapqipxt, oqqρrispoqdo´ xst,i,Wrisy

xst,i,Wrisy

ď

T
ÿ

t“1

m
ÿ

i“1

řd
j“1

şa` b´a
d
j

a` b´a
d
pj´1q

expp´ εi
2 Gapqipxt, oqqpρrispoq ´ µWris

poqqdo

γψxt{pb´ aq

ď

T
ÿ

t“1

m
ÿ

i“1

řd
j“1

şa` b´a
d
j

a` b´a
d
pj´1q

|ρrispoq ´ ρrispoi,jq|do

γψxt{pb´ aq
ď
V mT

γdψ̄
pb´ aq3

(83)

where the first inequality follows by concavity, the second by using the definition of W to see that

xst,i,Wrisy “
şb
a expp´ εi

2 Gapqipxt, oqqµWris
poqdo ě

γψxt
b´a , the third by Hölder’s inequality and the

mean value theorem for some oi,j P pa`
b´a
d pj ´ 1q, a` b´a

d jq, and the fourth by the Lipschitzness

of ρris P F
pγq
V,d. The third summation is a sum over the errors due to γ-robustness, with the result

following by U
pεq
xt pρq´U

pεq
xt pµq ď U

pεq
xt pµq´logp1´maxtγ´λ, 0uq´U

pεq
xt pµq ď 2 maxtγ´λ, 0u log 2.
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D.2.3 Settings of γ and d for Corollary 6.1

1. λ-robust and discrete µris P F
pλq
0,d : γ “ λ

2. λ-robust and V -Lipschitz µris P F
pλq
V,1 : γ “ λ and d “

S

d

V pb´aq3

ψ̄

c

´

1` mint1,ε̃mu
ε1

¯

T

W

3. discrete µris P F0,d: γ “
?
md 4

b

1`mint1,ε̃mu{ε1

T

4. V -Lipschitz µris P FV,1: γ “
?
m 4

b

V pb´aq3

ψ̄
8

b

1`mint1,ε̃mu{ε1

T and

d “

S

d

V pb´aq3

ψ̄

c

´

1` mint1,ε̃mu
ε1

¯

T

W

D.3 Data release

Lemma D.2. For w P 4d s.t. wris ě γ{d @ i P rns the gradient ∇wDKLp
x
n ||wq of the KL divergence

w.r.t. its second argument is bounded in `8-norm by d{γ and has `2-sensitivity d
?

2
γn .

Proof. We have ∇wDKLpx{n||wq “ ´∇wxx{n, log wy “ x
nw so since wris ě γ{d we have that

}∇wDKLpx{n||wq}8 “
›

›

x
nw

›

›

8
ď

dmaxi xris
γn ď d{γ Furthermore, for neighboring datasets x and x̃

we have

}∇wDKLpx{n||wq ´∇wDKLpx̃{n||wq}2 “

›

›

›

›

x

nw
´

x̃

nw

›

›

›

›

2

ď
d
?

2

γn
(84)

Lemma D.3. For w P 4d s.t. wris ě γ{d @ i P rns the gradient ∇θEm„θUtpw,mq has `2-sensitivity

at most 7π log d
γ .

Proof. For any xt and neighboring x̃t that replaces one element we have

|DKLpxt{nt||wq ´DKLpx̃t{nt||wq| “ |xxt ´ x̃t, log wy|{nt ď
2

nt
log

d

γ
(85)

Therefore

}∇θEm„θUtpw,mq ´∇θEm„θŨtpw,mq}2 ď 8nt

g

f

f

e

8
ÿ

m“1

ˆ

DKLpxt{nt||wq ´DKLpx̃t{nt||wq

m

˙2

ď 7π log
d

γ

(86)
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D.4 Proof of Theorem 6.4

Proof. Let M “

S

3

d

ε2N2 log d
γ

16 log2 2|Q|
β

W

and note that the m minimizing
řT
t“1 Utpwt,mq is in rM s and also

max
t,m

Utpwt,mq ď 8N log
d

γ
` 54 log

2
3
d

γ
ppN2{εq

2
3 ` 1{ε2q

˜

log2
εN log d

γ

β
` log4 |Q|

¸

“ Õ

¨

˝

N
4
3 log4 |Q|

β

mint1, ε2u
log

d

γ

˛

‚

(87)

Letting A “ O
´

log d
γ

¯

and B “ Õ

˜

N
4
3 log4 |Q|

β

mint1,ε2u
log d

γ

¸

we have

T
ÿ

t“1

Utpwt,mtq ď
logM

ηθ
` ηθ

˜

B

˜

B `

˜

2
a

logM `

d

2 log
3T

β1

¸¸

σθA
a

rlog2 T s

¸

T

`B

d

T

2
log

3

β1
`min

θPΘ

T
ÿ

t“1

Utpwt, θq

ď
logM

ηθ
` ηθ

˜

B

˜

B `

˜

2
a

logM `

d

2 log
3T

β1

¸¸

σθA
a

rlog2 T s

¸

T

`B

d

T

2
log

3

β1
` min
mPrMs

T
ÿ

t“1

8nt
m
DKL

ˆ

xt
nt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

wt

˙

`
16m2

ε2nt

ˆ

3 log
2m

β
` 2 log2 |Q|

˙2

ď
logM

ηθ
` ηθ

˜

B

˜

B `

˜

2
a

logM `

d

2 log
3T

β1

¸¸

σθA
a

rlog2 T s

¸

T

` 8

˜

log d

ηw
` ηw

Nd

γ

˜

Nd

γ
`

˜

2
a

log d`

d

2 log
3T

β1

¸

σw
d
?

2

γ

a

rlog2 T s

¸

T

¸

`B

d

T

2
log

3

β1
` min
mą0,wrisěγ{d

T
ÿ

t“1

Utpw,mq

ď Õ
´

a

pB `AσθqBT
¯

` Õ
ˆ

d

γ

a

pN ` σwqNT

˙

`B

d

T

2
log

3

β1

` Õ pmaxtγ ´ λ, 0uNT q ` min
mą0,wrisěλ{d

T
ÿ

t“1

Utpw,mq

“ Õ

˜˜

N
4
3

mint1, ε2u
`

N
2
3 {
?
ε1

mint1, εu
`
dN

γ
`
d

γ

c

N

ε1

¸

?
T `maxtγ ´ λ, 0uNT

¸

` min
mą0,wrisěλ{d

T
ÿ

t“1

Utpw,mq

(88)

where the first inequality follows by the regret of DP-FTRL w.r.t. θ together with [16, Lemma 4.1],
the second by noting the definition of Ut and restricting to integer m, the third by the guarantee
of DP-FTRL w.r.t. w, and the fourth by joint-convexity of DKL and simplifying terms.
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E Section 7 details

E.1 Location-scale families

A location-scale model is a distribution parameterized by a location ν P R and scale σ P Rě0 whose
density has the form µν,σpxq “

1
σf

`

x´ν
σ

˘

for some centered probability measure f : R ÞÑ Rě0.

E.1.1 Impossibility of simultaneous robustness and convexity

Theorem E.1. Let f : R ÞÑ Rě0 be a centered probability measure and for each θ P Θ define
µθpxq “ fpx´ θq.

1. If f is continuous then Uxpµθq is convex in θ for all sorted dataset x P Rn if and only if f is
log-concave.

2. There exist constants a, b ą 0 s.t. for any r ą 0, ψ P p0, R2n s, q ě
1
n , and θ P R there exists a

sorted dataset x P pθ ˘Rqn with miniPrn´1s xri`1s ´ xris “ ψ s.t. U
pqq
x pµθq “ aR` log b

ψ .

Proof. For the first direction of the first result, consider any θ, θ1 P R and λ P r0, 1s. We have that

U
pqq
˚x pµλθ`p1´λqθ1q ´

´

λU
pqq
x pµθq ´ p1´ λq logU

pqq
x pµθ1

¯

“ log
Ψ
pqq
x pµθq

λΨ
pqq
x pµθ1q

1´λ

Ψ
pqq
x µλθ`p1´λqθ1q

(89)

so it suffices to show that Ψxpqqpµλθ`p1´λqθ1q ě Ψ
pqq
x pµθq

λΨ
pqq
x pµθ1q

1´λ. By the log-concavity of f
we have

µλθ`p1´λqθ1pλx`p1´λqyq “ fpλpx´θq`p1´λqpy´θ1qq ě fpx´θqλfpy´θ1q1´λ “ µθpxq
λµθ1pyq

1´λ

(90)
for all x, y P R. Therefore by the Prékopa-Leindler inequality we have that

Ψ
pqq
x pµλθ`p1´λqθ1q “

ż xrtqnu`1s

xrtqnus

µλθ`p1´λqθ1pxqdx ě

˜

ż xrtqnu`1s

xrtqnus

µθpxqdx

¸λ˜
ż xrtqnu`1s

xrtqnus

µθ1pxqdx

¸1´λ

“ Ψxpqqpµθq
λΨ

pqq
x pµθ1q

1´λ

(91)

For the second direction, by assumption D a ă c, b ą c s.t.
a

fpxqfpyq ą fpx`y2 q @ x, y P ra, bs, i.e.

f is strictly log-convex on ra, bs. Let x P Rn be any dataset s.t. xrtqnu`1s ´ xrtqnus ď
b´a

2 and set

θ “ xrtqnus ´ a, θ1 “ xrtqnus ´
a`b

2 . Then we have

d

ż xrtqnu`1s

xrtqnus

µθpxqdx

ż xrtqnu`1s

xrtqnus

µθ1pxqdx “

d

ż xrtqnu`1s

xrtqnus

a

µθpxq
2
dx

ż xrtqnu`1s

xrtqnus

a

µθ1pxq
2
dx

ě

ż xrtqnu`1s

xrtqnus

a

µθpxqµθ1pxqdx

“

ż xrtqnu`1s

xrtqnus

a

fpx´ θqfpx´ θ1qdx

ą

ż xrtqnu`1s

xrtqnus

f

ˆ

x´
θ ` θ1

2

˙

dx “

ż xrtqnu`1s

xrtqnus

µ θ`θ1
2

pxqdx

(92)
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where the first inequality is Hölder’s and the second is due to the strict log-convexity of f on ra, bs.
Taking the logarithm of both sides followed by their negatives completes the proof.

Finally, for the second result, since f is centered and log-concave, by Cule and Samworth [22,
Lemma 1] there exist constants C, c ą 0 s.t. µθpxq ď C expp´c|x´ θ|q @ θ P R. Let

x “
`

θ `R´ nψ θ `R´ pn´ 1qψ ¨ ¨ ¨ θ `R´ 2ψ θ `R´ ψ
˘

(93)

so that |xrtqnus ´ θ| ě |xr1s ´ θ| “ R´ nψ ě R
2 . Then

Ψ
pqq
x pµθq “

ż xrtqnu`1s

xrtqnus

µθpxqdx ď Cψ expp´c|xrtqnus ´ θ|q ď Cψ expp´cR{2q (94)

so U
pqq
x pµq “ ´ log Ψ

pqq
x pµθq ě log 1

Cψ `
cR
2 .

Variants of the first result have been shown in the censored regression literature [15, 62]. In

fact, Burridge [15] shows convexity of U
pqq
x pµ xv,fy

φ
, 1
φ

q w.r.t. pv, φq P Rd ˆ Rą0, i.e. simultaneous

learning of a feature map and inverse scale. Convexity of Ux “ ´ log Ψx “ log
řm
i“1

1

Ψ
pqiq
x

“

log
řm
i“1 expp´ log Ψ

pqiq
x q follows because log

řm
i“1 e

xi is convex and non-decreasing in each argument.
Note that for the converse direction, the dataset x is not a degenerate case; in-fact if f is strictly
log-convex over an interval ra, bs then any dataset whose optimal interval has length smaller than
b´a

2 will yield a non-convex U
pqq
x pµθq.

E.1.2 The case of the Laplacian

For the Laplace prior with a “ xrtqnus and b “ xrtqnu`1s we have

´ logΨ
pqq
x pµ θ

φ
, 1
φ
q

“ log 2

´ log

ˆ

sign

ˆ

b´
θ

φ

˙ˆ

1´ exp

ˆ

´

ˇ

ˇ

ˇ

ˇ

b´
θ

φ

ˇ

ˇ

ˇ

ˇ

φ

˙˙

´ sign

ˆ

a´
θ

φ

˙ˆ

1´ exp

ˆ

´

ˇ

ˇ

ˇ

ˇ

a´
θ

φ

ˇ

ˇ

ˇ

ˇ

φ

˙˙˙

(95)

For θ ă aφ this simplifies to

log 2´ log
´

eθ´aφ ´ eθ´bφ
¯

“ log 2´ log
´

pe
b´a

2
φ ´ e

a´b
2
φqeθ´

a`b
2
φ
¯

“

ˇ

ˇ

ˇ

ˇ

θ ´
a` b

2
φ

ˇ

ˇ

ˇ

ˇ

´ log

ˆ

sinh

ˆ

b´ a

2
φ

˙˙ (96)

and similarly for θ ą bφ it becomes

log 2´ log
´

ebφ´θ ´ eaφ´θ
¯

“ log 2´ log
´

pe
b´a

2
φ ´ e

a´b
2
φqe

a`b
2
φ´θ

¯

“

ˇ

ˇ

ˇ

ˇ

a` b

2
φ´ θ

ˇ

ˇ

ˇ

ˇ

´ log

ˆ

sinh

ˆ

b´ a

2
φ

˙˙ (97)
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On the other hand for θ P raφ, bφs it is

log 2´ log
´

2´ e´|bφ´θ| ´ e´|aφ´θ|
¯

“ log 2´ log
´

2´ eθ´bφ ´ eaφ´θ
¯

“ log 2´ log
´

e´
b´a

2
φ
´

2e
b´a

2
φ ´ eθ´

a`b
2
φ ´ e

a`b
2
φ´θ

¯¯

“
b´ a

2
φ` log 2´ log

´

2e
b´a

2
φ ´ eθ´

a`b
2
φ ´ e

a`b
2
φ´θ

¯

“
b´ a

2
φ´ log

ˆ

e
b´a

2
φ ´ cosh

ˆ

θ ´
a` b

2
φ

˙˙

(98)

Thus we have

U
pqq
x pµ θ

φ
, 1
φ
q “

#

b´a
2 φ´ log

`

exp
`

b´a
2 φ

˘

´ cosh
`

θ ´ a`b
2 φ

˘˘

if θ P raφ, bφs
ˇ

ˇθ ´ a`b
2 φ

ˇ

ˇ´ log
`

sinh
`

b´a
2 φ

˘˘

else
(99)

Suppose x P r˘Bsn and has the optimal interval has separation ψ ą 0, θ
φ P r˘Bs, and

1
φ P rσmin, σmaxs. Then φ P r1{σmax, 1{σmins and θ P r˘B{σmins, and so

U
pqq
x pµ θ

φ
, 1
φ
q ď

2B

σmin
` log

2σmax

ψ
(100)

For θ R raφ, bφs, the derivative w.r.t. θ always has magnitude 1. Within the interval, the

derivative w.r.t. θ is ´
sinhpa`b

2
φ´θq

expp b´a
2
φq´coshpθ´a`b

2
φq

, which attains its extrema at the endpoints aφ and bφ,

where its magnitude is also 1. Outside the interval, the derivative w.r.t. φ has magnitude

ˇ

ˇ

ˇ

ˇ

a` b

2
sign

ˆ

a` b

2
φ´ θ

˙

´
b´ a

2
coth

ˆ

b´ a

2
φ

˙ˇ

ˇ

ˇ

ˇ

ď
|a` b|

2
`
b´ a

2
coth

ˆ

b´ a

2
φ

˙

ď
|a` b|

2
`
b´ a

2

ˆ

2{φ

pb´ aq
` 1

˙

“
|a` b|

2
`
b´ a

2
`

1

φ

(101)

while inside the interval the derivative w.r.t. φ is b´a
2 ´

pb´aq expp b´a
2
φq´pa`bq sinhpa`b

2
φ´θq

2pexpp b´a
2
φq´coshpa`b

2
φ´θqq

, which again

attains its extrema at the endpoints aφ and bφ, yielding magnitudes

b´ a

2
`
b´ a

2

ˆ

coth

ˆ

b´ a

2
φ

˙

` 1

˙

`
|a` b|

2
ď
b´ a

2

ˆ

2{φ

pb´ aq
` 3

˙

`
|a` b|

2

ď
1

φ
`

3

2
pb´ aq `

|a` b|

2

(102)

Thus we have
|BθU

pqq
x pµ θ

φ
, 1
φ
q| ď 1 and |BφU

pqq
x pµ θ

φ
, 1
φ
q| ď 4B ` σmax (103)
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E.2 Public-private release

E.2.1 Guarantees

Theorem E.2. Suppose for N ě n we have a private dataset x „ Dn and a public dataset x1 „ D1N ,
both drawn from κ-bounded distributions over r˘Bs. Use i.i.d. draws from the public dataset to
construct T “ tN{nu datasets x1t „ D1

n and run online gradient descent on the resulting losses

`x1tpθ, ψq “ LSEip`
pqiq
xt pθris, φrisqq over the parameter space θ P r˘B{σmins

m starting at θ “ 0m and

φ P r1{σmax, 1{σmins
m starting at the midpoint, with stepsize B

a

m
T for θ and σmax´σmin

4B`σmax

a

m
T for

φ, obtaining iterates pθ1, φ1q, . . . , pθT , φT q. Return the priors µi “ µ θ̄ris

φ̄ris
, 1
φ̄ris

for θ̄ “ 1
T

řT
t“1 θt and

φ̄ “ 1
T

řT
t“1 φt the average of these iterates. Then µ1 “

`

µ1 ¨ ¨ ¨ µm
˘

satisfies

Ex„DnUxpµ
1q

ď min
µPLapmB,σmin,σmax

Ex„DnUxpµq ` 2

ˆ

2B

σmin
` log

4κmpn` 1qNσmax

β1

˙

TVqpD,D1q

` pB ` 4Bσmax ` σ
2
maxq

c

mpn` 1q

N
` 2

ˆ

4B

σmin
` log

4κmpn` 1qNσmax

β1

˙

d

2pn` 1q

N
log

4

β1

`
pn` 1qβ1

N

ˆ

3`
4B

σmin
` 4 log

2κpn` 1qN
?

2mσmax

β1

˙

(104)

where LapB,σmin,σmax
is the set of Laplace priors with locations in r˘Bs and scales in rσmin, σmaxs.

Proof. Define D1ψ
n to be the conditional distribution over z „ D1n s.t. ψz ě ψ, with associated den-

sity ρ1ψpzq “
ρ1pzq1ψzěψ

1´p1ψ
, where p1ψ “

ş

ψzăψ
ρ1pzq ď κn2ψ. Then we have for any µ˚ P LapmB,σmin,σmax

that

Ez„DnUxpµ
1q

“ Ez„DnUzpµ
1q ´ Ez„D1nUzpµ

1q ` Ez„D1nUzpµ
1q ´ Ez„D1ψ

nUzpµ
1q ` Ez„D1ψ

nUzpµ
1q

ď

ż

Uzpµ
1qpρpzq ´ ρ1pzqq `

ż

Uzpµ
1qpρ1pzq ´ ρ1ψpxqq ` Ez„D1ψ

nUzpµ
˚q ` Eψ

ď Ez„DnUxpµ
˚q `

ż

pUzpµ
1q ` Uxpµ

˚qq|ρpzq ´ ρ1pxq| `

ż

pUzpµ
1q ` Uzpµ

˚qq|ρ1pzq ´ ρ1ψpzq| ` Eψ
(105)

where Eψ is the error of running online gradient descent with the specified step-sizes on samples
z1t „ D1ψ

n for t “ 1, . . . , T . Now if z has entries drawn i.i.d. from a κ-bounded distribution Dn (or

D1n), then we have that

ż ψ

0
ρψzpyqdy “ Prpψz ď ψ : z „ Dnq ď npn´ 1qmax

zPR
Prp|z ´ z1| ď ψ : z1 „ Dq ď κn2ψ (106)

where ρψz is the density of ψz for z „ Dn (not to be confused with the conditional density ρψ over z);
the same holds for the analog ρ1ψz

for D1n. Since this holds for all ψ ě 0 and log 1
y is monotonically

decreasing on y ą 0, this means the worst-case measure that ρψz can be is constant over r0, ψs and

thus
şψ
0 ρψzpyq log 1

ydy ď κn2
şψ
0 log 1

ydy “ κn2ψp1 ` log 1
ψ q, and similarly for ρ1ψz

. We then bound
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the first integral, noting that Uz “ LSEipU
pqiq
z q ď maxi U

pqiq
z ` logm ď 2B

σmin
` log 2mσmax

ψz
and that

the r.v. ψz depends only on the joint distribution over the order statistics of Dn and D1n:

ż

pUzpµ
1q ` Uzpµ

˚qq|ρpzq ´ ρ1pzq|

ď

ż
ˆ

2B

σmin
` log

2mσmax

ψz

˙

|ρpzq ´ ρ1pzq|

ď 2

ˆ

2B

σmin
` log

2mσmax

ψ

˙

TVqpD,D1q `
ż

ψzăψ
|ρpzq ´ ρ1pzq| log

1

ψz

ď 2

ˆ

2B

σmin
` log

2mσmax

ψ

˙

TVqpD,D1q `
ż ψ

0
pρψzpyq ` ρ

1
ψz
pyqq log

1

y
dy

ď 2

ˆ

2B

σmin
` log

2mσmax

ψ

˙

TVqpD,D1q ` 2κn2ψ

ˆ

1` log
1

ψ

˙

(107)

For the second integral we have for p1ψ “
ş

ψzăψ
ρ1pzq ď κn2ψ that

ż

pUzpµ
1q ` Uzpµ

˚qq|ρ1pzq ´ ρ1ψpzq|

“

ż

ψzěψ
pUxpµ

1q ` Uzpµ
˚qq

ˇ

ˇ

ˇ

ˇ

ˇ

ρ1pzq ´
ρ1pzq

1´ p1ψ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ż

ψzăψ
pUzpµ

1q ` Uzpµ
˚qqρ1pzq

“
2p1ψ

1´ p1ψ

ż

ψzěψ

ˆ

2B

σmin
` log

2mσmax

ψ

˙

ρ1pzq `

ż

ψzăψ

ˆ

2B

σmin
` log

2mσmax

ψz

˙

ρ1pzq

“ 2p1ψ

ˆ

4B

σmin
` log

4m2σ2
max

ψ

˙

`

ż

ψzăψ
ρ1pzq log

1

ψz

ď 2κn2ψ

ˆ

4B

σmin
` log

4m2σ2
max

ψ

˙

` κn2ψ

ˆ

1` log
1

ψ

˙

(108)

Finally, we bound Eψ. By κ-boundedness of D1, the probability that D t P rT s s.t. ψz1t
ă ψ @ t P rT s

is at most κn2Tψ, so if we set ψ “
β1

2κn2T
then w.p. ě 1 ´ β1{2 the sampling z1t from x1 as

specified is equivalent to rejection sampling from D1ψ
n, on which the functions Uz are bounded by

2B
σmin

` log 2mσmax
ψ . Therefore with probability ě 1´ β1{2 by Shalev-Shwartz [68, Theorem 2.21] and

Theorem D.1 we have that w.p. 1´ β1{2

Eψ ď pB ` pσmax ´ σminqp4B ` σmaxqq

c

m

T
` 2

ˆ

4B

σmin
` log

2mσmax

ψ

˙
c

2

T
log

4

β1

“ pB ` 4Bσmax ` σ
2
maxq

c

mpn` 1q

N
` 2

ˆ

4B

σmin
` log

2mσmax

ψ

˙

d

2pn` 1q

N
log

4

β1

(109)

Combining terms and substituting the selected value for ψ yields the result.
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E.2.2 Experimental details

For our public-private experiments we evaluate several methods on the Adult (“age” and “hours”
categories) and Goodreads (“rating” and “page count” categories). For the former we use the train set
as the public data, while for the latter we use the “History” genre as the public data and the “Poetry”
genre as the private data [70]. The public data are used to fit Laplace location and scale parameters
using the COCOB optimizer run until progress stops. We use the implementation here: https:

//github.com/anandsaha/nips.cocob.pytorch. All evaluations are averages of forty trials.
We use the following reasonable guesses for locations ν, scales σ, and quantile ranges ra, bs for

these distributions:

• age: ν “ 40, σ “ 5, a “ 10, b “ 120

• hours: ν “ 40, σ “ 2, a “ 0, b “ 168

• rating: ν “ 2.5, σ “ 0.5, a “ 0, b “ 5

• page count: ν “ 200, σ “ 25, a “ 0, b “ 1000
1´q

Note that, here and elsewhere, using q-dependent range for b only helps the Uniform prior, which is
the baseline. The scales σ are used to set the scale parameter of the Cauchy distribution for public
quantiles—its location is fixed by the public quantiles. Meanwhile the locations ν are used to set
to scale parameter of the half-Cauchy prior used to mix with PubFit for robustness (using coefficient
0.1 on the robust prior). We choose this prior because the data are all nonnegative.

E.3 Sequential release

E.3.1 Guarantees

Theorem E.3. Consider a sequence of datasets xt P r˘Rs
nt and associated feature vectors

ft P r˘F s
d. Suppose we set the component priors µt,i of µt as the Laplace distributions µt,i “

µ xvt,ifty
φt,i

, 1
φt,i

, where vt,i P r˘B{σmins
d and φi P r1{σmax, 1{σmins are determined by separate runs of

DP-FTRL with budgets pε1{2, δ1{2q and step-sizes η1 “
B

Fσmin

c

2mε11

rlog2pT`1qsT
´

1`
b

2md log T
β1

log 1
δ1

¯ , and

η2 “
1{σmin

B`σmax

c

mε12

2rlog2pT`1qsT
´

1`
b

2m log T
β1

log 1
δ1

¯ . Then we have regret

max
wiPr˘Bs

d

σiPrσmin,σmaxs

T
ÿ

t“1

Uxtpµtq ´ Uxtpµxwi,fty,σiq

ď
BpF ` 1q ` σmax

σmin

g

f

f

emdrlog2pT ` 1qsT

˜

4`
8

ε1

d

2md log
T

β1
log

2

δ1

¸

(110)

For sufficiently small ε1 (including ε1 ď 1) we can instead simplify the regret to

4

σmin

´

BFd
3
4 `B ` σmax

¯

g

f

f

e

mrlog2pT ` 1qsT

ε1

d

2m log
T

β1
log

2

δ1
(111)
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Proof. Note that

m
ÿ

j“1

}∇vj LSEip`
pqiq
xt,ft

q}22 ď }ft}
2
2

m
ÿ

j“1

¨

˝

expp`
pqjq
xt,ft

q

řm
i“1 expp`

pqiq
xt,ft

q

˛

‚

2

ď F 2d (112)

and

m
ÿ

j“1

pBφj LSEip`
pqiq
xt,ft

qq2 ď p4B ` σmaxq
2
m
ÿ

j“1

¨

˝

expp`
pqjq
xt,ft

q

řm
i“1 expp`

pqiq
xt,ft

q

˛

‚

2

ď p4B ` σmaxq
2 (113)

and so applying Theorem 6.1 twice with the assumed budgets and step-sizes yields

max
wiPr˘Bs

d

σiPrσmin,σmaxs

T
ÿ

t“1

Uxtpµtq ´ Uxtpµxwi,fty,σiq

“ max
viPr˘

B
σmin

sd

φiPr
1
σmax

, 1
σmin

s

T
ÿ

t“1

LSEip`
pqiq
xt,ft

pvt,i, φt,iqq ´ LSEip`
pqiq
xt,ft

pvi, φiqq

ď

m
ÿ

i“1

}v1,i ´ vi}
2
2

2η1
` η1rlog2pT ` 1qsT

˜

1`
2

ε1

d

2md log
T

β1
log

2

δ1

¸

m
ÿ

j“1

}∇vj LSEip`
pqiq
xt,ft

q}22

`

m
ÿ

i“1

pφ1,i ´ φiq
2

2η2
` η2rlog2pT ` 1qsT

˜

1`
2

ε1

d

2m log
T

β1
log

2

δ1

¸

m
ÿ

j“1

pBφj LSEip`
pqiq
xt,ft

qq2

ď
2B2md

η1σ2
min

` η1rlog2pT ` 1qsTF 2d

˜

1`
2

ε1

d

2md log
T

β1
log

2

δ1

¸

`
m

2η2σ2
min

` η2rlog2pT ` 1qsT pB ` σmaxq
2

˜

1`
2

ε1

d

2m log
T

β1
log

2

δ1

¸

ď
2BF

σmin

g

f

f

e2mdrlog2pT ` 1qsT

˜

1`
2

ε1

d

2md log
T

β1
log

2

δ1

¸

`
2

σmin
pB ` σmaxq

g

f

f

e2mrlog2pT ` 1qsT

˜

1`
2

ε1

d

2m log
T

β1
log

2

δ1

¸

ď
2

σmin
pBpF ` 1q ` σmaxq

g

f

f

emdrlog2pT ` 1qsT

˜

1`
2

ε1

d

2md log
T

β1
log

2

δ1

¸

(114)
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E.3.2 Experimental details

For sequential release we consider the following tasks:

• Synthetic is a stationary dataset generation scheme in which we randomly sample a one
standard Gaussian vector a for each feature dimension (we use ten) and another b of size
m ` 2, which we sort. On each day t of T we sample the public feature vector ft, also
from a standard normal, and the “ground truth” quantiles qi on that day are then set by
xa, fty ` bri`1s. We generate the actual data by sampling from the uniform distributions on
rxa, fty`bris, xa, fty`bri`1ss. The number of points we sample is determined by t100{pm` 1qu
plus different Poisson-distributed random variable for each; in the “noiseless” setting used in
Figure 4 (left) the Poisson’s scale is zero, so the “ground truth” quantiles are correct for the
dataset, while for Figure 5 (left) we use a Poisson with scale five. For the noiseless setting we
use 100K timesteps, while for the noisy setting we use 2500.

• CitiBike consists of data downloaded from here: https://s3.amazonaws.com/tripdata/

index.html, We take the period from September 2015 through November 2022, which is
roughly 2500 days, although days with less than ten trips—seemingly data errors—are ignored.
For each day we include a feature vector containing seven dimensions for the day of the
week, one dimension for a sinusoidal encoding of the day of the year, and six weather features
from the Central Park station downloaded from here https://www.ncei.noaa.gov/cdo-web/,
specifically average wind speed, precipitation, snowfall, snow depth, maximum temperature,
and minimum temperature. These are scaled to lie within similar ranges.

• BBC consists of Reddit’s worldnews corpus downloaded from here: https://zissou.infosci.
cornell.edu/convokit/datasets/subreddit-corpus/corpus-zipped/. We find all con-
versations corresponding to a post of a BBC article, specified by the domain bbc.co.uk, and
collect those with at least ten comments. We compute the Flesch readability score of each
comment using the package here https://github.com/textstat/textstat. The datasets for
computing quantiles are then the collection of scores for each headline; the size is roughly 10K,
corresponding to articles between 2008 and 2018. As features we combine a seven-dimensional
day-of-the-week encoding, sinusoidal features for the day of the year and the time of day of
the post, information about the post itself (whether it is gilded, its own Flesch score, and the
number of tokens), and finally a 25-dimensional embedding of the title, set using a normalized
sum of GloVe embeddings [61] of the tokens, excluding English stop-words via NLTK [55].

We again use reasonable guesses of data information to set the static priors, and to initialized
the learning schemes.

• Synthetic: ν “ 0, σ “ 1, a “ ´100, b “ 100

• CitiBike: ν “ 10, σ “ 1, a “ 0, b “ 50{p1´ qq

• BBC: ν “ 50, σ “ 10, a “ ´100´ 100{p1´ qq, b “ 100` 100q

We use a and b for the static Uniform distributions, ν and σ for the static Cauchy distributions,
in the case of nonnegative data (CitiBike) we use ν for the scale of the half-Cauchy distribution,
and for the learning schemes we initialize their Laplace priors to be centered at ν with scale σ. We
again use the COCOB optimizer for non-private and proxy learning, and for robustness we mix
with the Cauchy (or half-Cauchy for nonnegative data) with coefficient 0.1 on the robust prior.
For the PubPrev method, we set its scale using σ. For DP-FTRL, we heavily tune it to show the
possibility of learning on the synthetic task; the implementation is adapted from the one here: https:
//github.com/google-research/DP-FTRL. All results are reported as averages over forty trials.
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