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Abstract

Differentially private (DP) selection is the problem of selecting a high scoring
candidate from a finite candidate pool where the score of each candidate is a
function of a sensitive dataset. This problem arises naturally in a variety of
contexts including model selection, hypothesis testing, and as a subroutine in
many differentially private algorithms. Classical work in private selection assumes
that the "goodness" of all selection candidates is equally sensitive to changing
the data of a single individual. However, in many settings this assumption is
false. Intuitively, utilising the fact that some candidate scores are less sensitive
should allow for more accurate differentially private selection mechanisms. In
this work we theoretically and empirically compare DP selection algorithms that
account for heterogeneity with standard DP selection algorithms that assume
homogeneous sensitivities of the candidate scores. While the selection algorithms
that account for heterogeneity can add less noise to the overall computation, we
find that, surprisingly, this does not always result in a higher utility algorithm.
Our theoretical analysis and experimental results shed light on scenarios when
heterogeneous sensitivities can be exploited.

1 Introduction

Differentially private (DP) selection is a fundamental task that arises naturally in a variety of contexts
including model selection, hypothesis testing and as a subroutine in many algorithms. Given a set
of candidates A, a score function q : A× χn → R, and a database D ∈ χn, a differentially private
selection algorithm aims to output the candidate with the highest score, argmaxa∈A q(a,D) while
protecting the privacy of the data subjects whose data is part of D. Classical work in private selection
assumes that the score function q(a, ·) of all selection candidates a is equally sensitive to changing
the data of a single individual. However, in many settings this assumption is false. For example, when
performing model selection, more robust models may have lower sensitivity. Intuitively, utilising
the fact that some candidates have better than worst-case sensitivity should allow for more accurate
differentially private selection mechanisms. Define the candidate-wise sensitivity of a score function
for candidate a ∈ A to be

∆a = max
D1,D2

|q(a,D1)− q(a,D2)| (1)

where the maximum is over all pairs (D1, D2) of datasets that differ on the data of a single individual.
In this work we aim to answer the following question: when do algorithms that adapt to heterogeneity
in the set {∆a}a∈A outperform standard DP selection algorithms?

When designing differentially private algorithms, it is natural to think that reducing the amount of
noise added anywhere in an algorithm will improve utility. A surprising finding of our study is
that this is not true. There exist settings where adding more noise than necessary actually improves
performance. To see this, let us consider perhaps the most popular private selection algorithm; Report
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Noisy Max (RNM) Dwork et al. (2006). Define the overall sensitivity of the score function to be

∆ = max
a∈A

∆a. (2)

Then RNM is defined by

M(D) = argmax
a∈A

{q(a,D) + za}, where za ∼ Exp(ϵ/2∆), (3)

where ϵ is the privacy parameter and Exp(ϵ/2∆) is the exponential distribution with mean 2∆/ϵ.
RNM adds the same amount of noise to the score of every candidate. Consider an alternative
algorithm, RNMH, where the amount of noise added is proportional to the candidate-wise sensitivity
of the candidate

M(D) = argmax
a∈A

{q(a,D) + za}, where za ∼ Exp(ϵ/2∆a). (4)

Since RNMH adds strictly less noise to the scores of some candidates, we might assume that RNMH
always outperforms RNM. Surprisingly, this is not the case. To see this, let us analyse the behaviour
of these two algorithms in a specific example. Suppose we have k candidates, A = {a1, · · · , ak},
score function q and database D where ∆ai = ∆1 and q(ai, D) = q1 if i ≤ k/2, and ∆ai = ∆2 and
q(ai, D) = q2 otherwise. Assume q1 < q2. RNMH outputs one of the higher scoring candidates
whenever

max
i=1,··· ,k/2

zai
− max

i=k/2+1,··· ,k
zai

≤ q2 − q1, (5)

where zai ∼ Exp(ϵ/2∆1) if i = 1, · · · , k/2 and zai ∼ Exp(ϵ/2∆2) otherwise. If ∆1 > ∆2 then
maxi=1,··· ,k/2 zai stochastically dominates maxi=k/2+1,··· ,k zai (that is, it is more likely to output
higher values), so the LHS of eqn (5) is likely to be positive in this setting. In fact, the expectation of
the LHS is Hk/2(∆1 −∆2) (where Hk/2 is the k/2th harmonic number), which is positive when
∆1 > ∆2 and grows linearly with ∆1 −∆2. If either k or ∆1 −∆2 is large, then the probability
of RNMH outputting a higher scoring candidate may be less than 50%, which is never the case for
RNM. Conversely, when ∆1 < ∆2, we have the opposite effect and RNMH outperforms RNM. We
find that the intuition from this example generalises well to more complex distributions of scores and
sensitivities; when the scores q(a,D) and sensitivities ∆a are positively correlated, RNMH generally
outperforms RNM. However, when the correlation is negative, RNMH generally performs worse than
RNM, and can even perform worse than the algorithm that selects a candidate uniformly at random.

RNMH is the natural extension of RNM to include heterogeneous sensitivities, but unfortunately it is
not differentially private (see Section 2 for details). While most of the work on private selection has
focused on the homogeneous sensitivities setting (where all the ∆a sensitivities are assumed to be the
same), there have been two main proposals for differentially private selection algorithms that are able
to utilise heterogeneity; the generalised exponential mechanism (which we’ll denote GEM) Raskhod-
nikova & Smith (2015) and RNM with random stopping (which we’ll denote RSγ) (an instantiation
of Liu & Talwar (2019)). While the relative performance of RNMH and these two algorithms is not
straightforward, we expect the intuition for when RNMH outperforms RNM to extend to both of
these algorithms. Our empirical experiments, across the settings we tested, consistently support this
intuition. In Figure 1 we examine the relative performance of these algorithms in a setting similar
to that described in the previous paragraph. We can see that indeed the expected pattern continues.
We’ll discuss additional results further in Section 2. While prior literature Raskhodnikova & Smith
(2015) has given upper bounds on the error in terms of the sensitivity of the optimal candidate, we go
beyond this and explore how the distribution of the score-sensitivity pairs {(a,∆a)} affects which
algorithm is the optimal choice.

Our contributions are as follows:

• We theoretically establish a rule for when RNMH outperforms RNM in the simple setting of
bimodal scores and sensitivities setting. Through empirical studies we show that this rule
also holds for the ϵ-DP selection algorithms RSγ and GEM. In fact, we see that in the two
candidate setting, this effect is exaggerated for both RSγ and GEM.

• We analyze the behaviour of the private selection mechanisms in a range of different settings
with a particular focus on the comparison between algorithms that do and do not adapt
to heterogeneity in candidate-wise sensitivities. We find that the intuition from the two
candidate setting extends to more complex settings with a larger number of candidates; a
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(a) Scenario 1: high scores = 1,
sensitivities = 1.8; low scores = -1,

sensitivities = 1.

(b) Scenario 2: same scores, but the
higher left score group now has

small sensitivities.

(c) Scenario 3: same scores, but
each group has an equal share of

large and small sensitivities.

Figure 1: Comparison between algorithms that do and do not adapt to heterogeneity in the candidate-
wise sensitivities, in three simple scenarios. Scores and sensitivities here are constant and are shown
in the top row, as dark purple dots and light purple vertical lines, respectively. The second row shows
mechanism performance (as the mean squared error) as a function of the privacy parameter ϵ.

positive correlation between the scores and the candidate-wise sensitivities indicates that
algorithms that utilise heterogeneity will perform better than algorithms that do not. A
negative correlation implies the opposite.

2 Private Selection with Heterogeneous Sensitivities

A Naive Extension of RNM with Heterogeneous Sensitivities is Not Differentially Private. It
is tempting to incorporate the heterogeneous sensitivities by running RNM as is, but with noise
scaled by the candidate-wise sensitivities resulting in RNMH as described in eqn (4). Unfortunately,
this algorithm is not ϵ-differentially-private in general. In fact, there exists pairs of sensitivities ∆1

and ∆2 such that this algorithm is not ϵ′-DP for any ϵ′ > 0 even when selecting between just two
candidates. Consider an example where candidate 1 has score 0 in all databases and so sensitivity
∆1 = 0. Then let candidate 2 have sensitivity 1 and a score q2 = 1/2 in D1 and a score q′2 = −1/2
in D2, where D1 and D2 are adjacent databases. Then the probability of outputting candidate 1
under dataset D1 is 0 (since exponential noise is always positive) but under D2 it is 1− e−ϵ/4, which
implies this algorithm is not ϵ′-DP for any ϵ′.

If we use Laplace noise rather than exponential noise in eqn 4 (so za ∼ Lap(ϵ/∆a)) then it is easy
to see that the resulting algorithm is kϵ-DP where k is the number of candidates. However, there
exists a sequence of sensitivities ∆1, · · · ,∆k such that RNM with Laplace noise and heterogeneous
sensitivities is not ϵ′-DP for any ϵ′ < (k − 1)ϵ. A proof of this appears in the appendix.

Experimental Analysis of When Incorporating Heterogeneity Helps. The experiment results
in Figure 2 expand on the intuition we gained in the introduction. In particular, they support the
intuition that a positive correlation between the scores and sensitivities indicates that the algorithms
RNMH, RSγ and GEM outperform RNM. In the case of negative correlation we find that not only
can RNMH, RSγ and GEM perform worse than RNM, they can actually perform worse than the
algorithm that selects a candidate uniformly at random.

We create several different scenarios representing different distributions of the set {(q(a,D),∆a)}.
Of course, these scenarios do not provide an exhaustive list of possible distributions of the set
{(q(a,D),∆a)}, but they do provide intuition for realistic scenarios that may arise in practice. For
readability, we simplify the notation and replace q(a,D) with qa throughout this section.

3



(a) Scenario 4:
N (log(a); sorted(∆2

a)),
∆a ∼ N[0.01,0.7](0.5; 1)

(b) Scenario 5:
N (0.1a; 2.3− 0.02a)

(c) Scenario 6: N (µa,∆a), where
µa ∼ U[0,1], ∆a as in (a)

Figure 2: Comparison between algorithms that do and do not adapt to heterogeneity in the candidate-
wise sensitivities for three different score and sensitivity distributions with randomness in the scores
between trials. Mean scores and sensitivities are shown in the top row, as red dots and blue vertical
lines, respectively. The second row shows mechanism performance (as the mean squared error) for
varying levels of the privacy parameter ϵ.

Let Pa,∆ denote a distribution of candidate scores over experiments from which each score dataset is
sampled. We include randomness in the scores to mimic the fact that, in the real world, a domain
expert may have an expectation of the relationship between qa and ∆a but any particular instantiation
will have some variability. Given these score distributions, we generate N sets of the form {(qa,∆a)}
as follows. For each candidate a, we generate N samples from Pa,∆, q1a, · · · , qNa . We then compute
the 5th and 95th percentiles, p0.05a and p0.95a , of the set {q1a, · · · , qNa } and set ∆a = |p0.95a − p0.05a |.
Finally, we truncate each score to be within the range [p0.05a , p0.95a ]. The final N sets are then
{(q′ia,∆a)}a∈A for i ∈ [N ], where q′

i
a = max(p0.05a ,min(qia, p

0.95
a )). The particulars of each

distribution are shown in Figure 2. The following parameters are used, unless specified otherwise: for
RSγ , γ = 0.05; for GEM, β = 0.05. In all scenarios we set N = 10000 and |A| = 100. We then run
the algorithms on each of these N sets and report the mean squared error (MSE) across experiment
runs.

Scenario 4, in Figure 2a, shows an exaggerated view of heterogeneity being useful. Here kRR
improves the slowest with ϵ, followed by RNM. Both are outperformed by RNMH, GEM, and RSγ

for reasonable ϵ’s. Note that, when ϵ is very large, RSγ converges with more error than the other
algorithms due to the random stopping, which means it may not see all the candidates. Scenarios
5 and 6 demonstrate that homogeneous noise is preferable when there is no or negative correlation.
This is especially true for small ϵ’s.

Figure 3: Medians of predicted
scores and sensitivities on the Ya-
hoo dataset display a positive corre-
lation.

Sensitivities in the wild. Having discussed synthetic
scenarios thus far, we use the Yahoo clicks dataset
(https://webscope.sandbox.yahoo.com) collected from real user
interactions to underscore the practical relevance of our find-
ings. Training a Logistic regression model predicting click
through rates of articles for a given user, we obtain the score
distributions and truncated candidate-wise sensitivities (Fig-
ure 3). Indeed, a positive correlation between the median scores
and the sensitivities with correlation coefficient of ≈ 0.71 is
observed. Using the intuition we gained from the previous sec-
tion, we expect the algorithms that utilise heterogeneity in the
candidate-wise sensitivities to outperform RNM when privately
selecting one of the articles.
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A Counterexample for RNM with Heterogeneous Noise

We showed in Section 2 that RNMH is not differentially private.

In this section, we provide a counterexample to show RNM with Laplacian noise and heterogeneous
noise (but otherwise with the original parameters) is not ϵ′-differentially-private for any ϵ′ < (k−1)ϵ,
where k is the number of candidates. Consider RNMH with heterogeneous Laplace noise, i.e. the
noised scores are q̃a = qi + zi with zi ∼ Lap(∆i/ϵ) and ϵ > 0. Now in dataset D1 we have qi = 0
for i = 1, ..., k and in dataset D2 we have q1 = 0 but qi = 1 for i = 2, ..., k. Suppose candidate one
has sensitivity ∆1 = 0 and candidates 2, ..., k have candidate-wise sensitivities ∆i = 1.

We now compute the probability of RNMH with Laplacian noise outputting candidate 1 on both
datasets. For dataset D1 we have that

Pr(M(D1) = 1) = Pr(zi < 0 for i = 2, ..., k) (6)

=

k∏
i=2

Pr(zi < 0) (7)

=

(
1

2

)k−1

(8)

On the other hand we have that

Pr(M(D2) = 1) = Pr(zi < −1 for i = 2, ..., k) (9)

=

k∏
i=2

Pr(zi < −1) (10)

=

(
1

2
exp(−ϵ)

)k−1

(11)

Thus,

Pr(M(D1) = 1)

Pr(M(D2) = 1)
=

( 1
2

1
2 exp(−ϵ)

)k−1

(12)

= exp((k − 1)ϵ), (13)

which concludes the counterexample.
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