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1 Introduction

Differential privacy (DP) has been seeing ever wider adoption in recent years, and has become a de facto
standard for private statistical analysis. Both private companies such as Google and Apple and government
bodies such as the United States Census Bureau have announced their adoption of DP algorithms for their
data collection and release procedures [1, 3, 2, 4]. However, it can be tricky to analyze DP algorithms; in
one notable example, many different iterations of an algorithm known as the Sparse Vector Technique (SVT)
algorithm have been produced and supposedly proven correct, but were later shown to fail to achieve finite
privacy loss [16].

The difficulty of ensuring that DP algorithms are truly private has motivated the development of auto-
mated tools to formally verify that DP algorithms meet their claimed privacy bounds. However, it is known
that complete verification of differentially private algorithms is undecidable, even for a relatively limited class
of programs [8]. One way to circumvent these negative results is to restrict the class of programs we analyze
further, such as requiring that every program can take input and output only from a finite domain, or limiting
programs to branching on real-valued comparisons [8, 11, 12]. Another approach has been to develop heuris-
tic or incomplete techniques for automatically generating proofs of privacy for DP algorithms. An especially
notable tool for heuristic approaches is a construct known as an approximate lifting [9, 10, 14, 7, 6].
Approximate liftings are a generalization of probabilistic couplings, themselves a well-known technique in
probability theory for analyzing relationships between random variables. Approximate liftings allow for a
more structured approach to the privacy analysis of many algorithms that may not be conducive to a simple
analysis via standard DP tools like composition theorems. Examples of algorithms that can be more easily
analyzed using approximate liftings are SVT, Report Noisy Max, and Between Thresholds.

There are direct connections between approximate liftings and privacy; for example, the existence of
a certain type of “equality” coupling for an algorithm is exactly equivalent to the algorithm itself being
differentially private [9]. However, it can be extremely non-trivial to show that an arbitrary approximate
lifting is valid—in the case of “equality” couplings, it can require essentially doing a manual (human) proof of
privacy for the algorithm. We analyze a specific class of “shift” couplings, based on coupling noise random
variables sampled by the algorithm. These couplings are easy to algorithmically construct, and, while
their existence is not guaranteed to be equivalent to the privacy of an algorithm, it still implies differential
privacy.

Perhaps surprisingly, we show that shift couplings can also be used to construct complete decision pro-
cedures for privacy for suitably constrained models of computation. Inspired by algorithms like SVT, we
construct a limited language-theoretic program model that takes in a stream of query values, that is, real-
valued functions of some underlying dataset, and compares them to a persistent stored threshold variable,
after adding noise to both the variable and the query value. As one application, such a program model
can be used to implement algorithms that detect distribution shift, i.e., to detect that a parameter of the
population has changed its value significantly. They are also used as subroutines in other algorithms, for
example in private multiplicative weights [13].

We first demonstrate how to construct shift couplings for programs in our model, starting with individual
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program transitions, and then “straight line programs”, and full programs, which we model, respectively, as
individual characters in a finite alphabet, words constructed from those characters, and a regular language
comprised of those words. Through our language-theoretic framework, we show that it is possible to decom-
pose any, possibly infinitely sized, program into a finite set of smaller, “periodic”, programs that can each
be analyzed independently and efficiently. We then also show that, under a mild additional constraint on
our model, if no shift coupling proof exists, then the program cannot be differentially private. Moreover,
since we can also decide in linear time if a coupling proof of the required type exists for a given program, we
also derive a linear-time decision procedure for the privacy of programs in our model. We further provide
an approach to optimize coupling proofs, providing tighter bounds on the privacy parameter ε for a given
program.

Our proof that approximate liftings are complete for our model, in the sense above, builds on an equiva-
lence that we show between a subclass of programs in our model and the automata-theoretic model DiPA [11].
We argue that coupling proofs reframe and re-explain the results of [11] in a natural and intuitive manner.

Finally, we extend our program model to accommodate an arbitrary number of threshold variables. We
also generalize the construction of coupling proofs of privacy to this more general model. This generalization
is an illustration of the flexibility and power of approximate liftings as a method of giving privacy proofs.
Interestingly, the generalization also introduces new subtleties, and we need to introduce a new coupling
strategy, which we call cross couplings, that does not have an analogue in the one variable model.

We also generalize the optimization procedure for single variable coupling proofs to an incomplete opti-
mization procedure for multiple variable programs. Finally, we show that, for two variable programs, shift
coupling proofs remain complete for deciding privacy, conjecture that that this remains the case for three
and more variables. If our conjecture holds, then coupling proofs would characterize the privacy of a natural
and rich class of programs.

2 Our Model and Results

Our program model accepts a stream of real-valued inputs, taken to be query functions of an underlying
dataset. Each program is broken down into individual program steps, or transitions that operate as follows:
at each transition, the program reads in an input value, adds Laplace noise to the input value, and compares
the input value to a stored real-valued variable. Depending on the result of the comparison, the program
takes the transition, outputs a value, and optionally assigns the noisy input into the real-valued variable.
As mentioned, we take each transition to be a single character in our language-theoretic approach.

We first show that approximate liftings can be constructed for program transitions in isolation. Specif-
ically, we define a family of “coupling strategies” parameterized by three real-valued “shifts” γx, γt, γ

′
t ∈

[−1, 1], where the noise variables used by the transition on one input are coupled with shifted copies of the
noise variables used on a neighboring input. In particular, if the shifts satisfy certain validity conditions,
then we can immediately construct a coupling-based proof of privacy for the individual transition. Of note,
every coupling proof is associated with a privacy cost that directly corresponds to the ε in ε-differential
privacy.

By sequentially concatenating transitions, we construct “straight line programs” (SLPs), which model a
full execution of a program. Equivalently, each SLP is a word comprised of characters from a finite alphabet
of transitions. We show that we can also concatenate coupling strategies associated with each transition to
create a family of coupling strategies for an entire SLP. In particular, the validity conditions of individual
coupling strategies for transitions also combine cleanly to define a constraint system that defines validity
for SLP coupling strategies. Just as with individual transitions, we show that if a coupling strategy for an
SLP is valid with cost ε, then the SLP itself is ε-differentially private.

Full programs in our model are modeled as a structured subset of regular languages over some finite
alphabet of transitions. In particular, programs must be “generated” by an underlying finite-state control
flow graph that supports standard looping and branching operations. Additionally, the underlying graph of
a program must satisfy certain properties, such as determinism.

Naively, each constituent SLP of a program must be assigned its own coupling strategy, which could be
computationally intractable since programs can be infinitely sized due to loops. Fortunately, it is known
(see, for example, [17, 5]) that every regular language can be decomposed into a finite union of union-free
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regular languages. We thus decompose every program into such a finite set of union-free regular languages,
which we individually call periodic programs. We show that each periodic program can be assigned a
single coupling strategy, thus making the overall problem of finding coupling strategies for full programs
tractable.

We also show that a single additional condition for coupling strategies determines whether or not a
coupling proof for a periodic program has finite cost or not.

Lemma 2.1. For a periodic program L a valid coupling strategy C = (γ, γ′) has finite cost if and only if C
assigns 0 privacy cost to every transition contained within a cycle in the underlying control flow graph of L.

We can bundle this finite cost constraint with the validity constraints on coupling strategies to
create a privacy constraint system for any periodic program L.

Lemma 2.2. If the privacy constraint system for a periodic program L is satisfiable, then L is ε-differentially
private for some ε > 0.

We further define the class of output-distinct programs, which, intuitively, captures programs for which
the transitions taken can be recovered from the output sequence of the program. We show that shift couplings
are complete for deciding the privacy of output distinct programs.

Theorem 2.3. An output-distinct program P is ε−differentially private for some finite ε > 0 if and only if,
for every periodic program L of a decomposition of P , the privacy constraint system for L is satisfiable.

Beyond showing that such coupling proof systems are complete, we also provide algorithms for finding
and optimizing the cost of coupling proofs. We consider this problem through the framework of constraint
optimization: what is the minimal cost coupling strategy that satisfies the privacy constraint system?

We state the exact problem for a single periodic program, which we call the coupling cost optimization
problem, and conjecture that the cost is privacy-optimal ; that is, the “true” privacy cost of a program
exactly matches the optimal solution to the coupling cost optimization problem for the program.

Unfortunately, it is unknown whether or not an efficient (i.e. polynomial time) algorithm for solving
the exact coupling cost optimization problem exists. In particular, the exact formulation requires solving
a nested optimization problem. In lieu of such an algorithm, we introduce an approximate coupling cost
optimization problem, which makes assumptions about an optimization parameter such that the originally
nested optimization problem becomes a single layer optimization problem. This simplification allows the
approximate cost problem for a periodic program to be solved in polynomial time1 by an application
of the ellipsoid method. We show that the approximation produces valid coupling proofs and that the
approximation factor is bounded by a term linear in the number of non-cyclic transitions in L.

Proposition 2.4. There exists a valid coupling strategy CL for any differentially private periodic program
L such that the privacy cost of CL matches the optimal solution to the approximate coupling cost problem
for L. Further, opt(L) ≤ approx(L) ≤ opt(L) +

∑
i∈I di +

∑
σi=insample′ d

′
i, where I is the set of transitions

in L that do not appear in a cycle and di, d
′
i are program specific constants.

The constraints derived from the approximate cost problem additionally allow us to define a linear-time
algorithm for the problem of deciding whether or not any finite ε > 0 exists such that a program is ε-
differentially private. Importantly, we show that the approximate cost constraints are satisfiable if and only
if the privacy constraint system of a periodic program is satisfiable. Our algorithm constructs a privacy
constraint graph, which directly maps from the approximate cost constraints into edges of the graph; we
can check for privacy by looking for certain “contradictory” paths in the graph. Notably, we show how to
construct a privacy constraint graph for an full program, not just individual periodic programs, and show
that the overall algorithm has linear time complexity in the size of the underlying control flow graph of a
program.

Theorem 2.5. Given an output-distinct program P generated by a control flow graph G, we can decide if
P is differentially private in linear time in the size of G.

1Note that a single program may possibly contain exponentially many periodic programs.
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As mentioned, part of our completeness proof flows from an equivalence between our program model and
a previously introduced program model, known as DiPA [11]. DiPA is an automata-theoretic model that also
models a class of algorithms based on comparing real-valued queries to a stored threshold variable. Indeed,
we show that this class of algorithms is equivalent to the class of output-distinct program in our model.

Notably, the privacy of a DiPA program can be decided through a decision procedure that checks for
the existence of four particular problematic graph structures in the automata graph of the program; a DiPA
program is private if and only if none of the problematic graph structures appear in the graph (i.e. it is
“well-formed”). Perhaps surprisingly, we show a direct connection between the existence of these graph
structures and the satisfiability of the privacy constraint system for a program.

Theorem 2.6. An output-distinct program P contains a periodic program whose privacy constraint system
is unsatisfiable if and only if the corresponding DiPA AP of P is well-formed.

Interestingly, coupling-based proofs also allow for straightforward generalizations to different program
models in a similar paradigm. We specifically apply coupling proofs to prove the privacy of an extended
program model that allows for an arbitrary number of threshold variables to compare inputs against. A
similar multivariable extension of DiPA was considered before, but it only allowed for conjunctions between
variable guards, and required input noise variables to be correlated [12]

Analogously to the single variable case, we define a family of “shift” couplings for programs; however,
this time each shift coupling family is defined independently for each program variable. Indeed, we show
that we can create coupling strategies “in parallel” by analyzing each program variable in isolation and
compose them together to create a coupling strategy for the entire program.

We also introduce a new type of coupling, which we call cross couplings. Cross couplings are a type
of coupling, compatible with existing “parallel” shift couplings, that allow for certain transitions whose
transition conditions correspond to tautologies or contradictions to be coupled “for free”.

We show that if any coupling proof strategy (using either parallel or cross couplings) exists for a multi-
variable program, then the program is private. Again as in the single variable case, we can characterize the
existence of coupling proofs through a privacy constraint system.

Lemma 2.7. If, for every constituent periodic program L of a multivariable program P , the (multivariable)
privacy constraint system for L is satisfiable, then P is ε-differentially private for some finite ε > 0.

Unfortunately, the conditions that allow for a cross coupling to be created are much more complex than
the inequality-based constraints of parallel couplings (which themselves are derived directly from single
variable couplings). Thus, it is unknown whether there exists a tractable algorithm for even approximately
optimizing multivariable coupling cost. However, by ignoring cross couplings entirely, we can define an
incomplete optimization problem consisting of parallel coupling constraints and a similarly incomplete
decision algorithm for multivariable programs derived directly from the single variable analogue.

We also show that, for output-distinct programs with exactly two variables, coupling proofs are still
complete. We again take a graph-theoretic approach: accounting for an exception raised by the introduction
of cross-couplings, we show that the unsatisfiability of the privacy constraint system for a periodic program
implies that the underlying program graph must contain one of four problematic graph structures. Through
detailed analysis, we show that the existence of these four graph structures directly implies that the program
cannot be ε-differentially private for any ε > 0. While this is similar to the analysis of DiPA for the single
variable case, we need new input instance constructions to certify the lack of privacy for the multivariate
case, and their analysis is more complicated than the single variables case.

Theorem 2.8. An output-distinct two variable program P is ε-differentially private for some ε > 0 if and
only if the privacy constraint system for every constituent periodic program of P is satisfiable.

We conjecture that our completeness result extends to programs with three or more variables as well,
and discuss possible proof approaches in the full version of our paper.

We propose multiple areas for future work. Most notably, the limited program model is ripe for ex-
tensions, both trivial and non-trivial. For example, in addition to extending our completeness results to
programs with three or more variables, we suggest that it is possible to extend the definition of transition
guards to encompass more complicated predicates (beyond real-valued comparisons) in both the single and
multivariable cases.
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The completeness of coupling proofs for both single variable and two variable threshold programs (and
possibly, as we conjecture, general multivariable threshold programs) also suggests the possibility of using
coupling proof techniques to directly discover and prove the validity of privacy violating input sequence pairs,
in the spirit of current efforts at “auditing” DP machine learning algorithms [15, 18]. If such constructions
exist, they could make the problem of finding counterexamples and lower bounds for privacy cost a much
simpler task.
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[9] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. Proving Differ-
ential Privacy via Probabilistic Couplings. In Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’16, pages 749–758, New York, NY, USA, July 2016. Association
for Computing Machinery.

[10] Gilles Barthe and Federico Olmedo. Beyond Differential Privacy: Composition Theorems and Rela-
tional Logic for f-divergences between Probabilistic Programs. In David Hutchison, Takeo Kanade,
Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi,
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