
Enhanced Privacy-Preserving Decision Trees using Secure

Multiparty Computation and Differential Privacy

Arisa Tajima1 Wei Jiang2 Virendra Marathe2 Hamid Mozaffari2

1University of Massachusetts Amherst, Amherst, MA, USA
atajima@umass.edu

2Oracle Labs – East, Burlington, MA, USA
{wei.wj.jiang, virendra.marathe, hamid.mozaffari}@oracle.com

Abstract

We address the problem of decision tree learning from data that may be distributed across multiple
data owners while protecting the privacy of the training data and the model from each data owner. To
protect the training data, Secure Multiparty Computation (MPC) provides a very promising privacy-
preserving solution with none or minimum accuracy loss, but there is a potential privacy leakage on the
training data during model prediction or inference. To this end, existing solutions use a hybrid framework
that combines MPC and Differential Privacy (DP), where DP models are trained with MPC protocols.
The existing approaches combine MPC and DP in a naive way and often lead to models with lower
accuracy. In this work, to take the full advantage of MPC’s inherent security guarantee, we propose a
novel way of utilizing both MPC and DP that can improve model accuracy while providing the same
privacy guarantee. Our key design idea is to adopt MPC for building the entire model without leaking
any intermediate results, and then carefully calibrated noise to enforce the DP guarantee (DP-noise) is
only added at the leaf level to achieve the desired ϵ-DP. By doing so, less amount of noise is needed,
and as a consequence, model accuracy can be significantly improved. We provide formal privacy proof
of the proposed protocol and analyze the amount of required DP-noise. In addition, we implemented
our protocol in a distributed environment, and our empirical results show that our approach can indeed
improve model accuracy by up to 29% for the Adult dataset even with a small privacy budget of ϵ = 0.005
comparing to the existing solution. However, our solution is computationally more expensive, and it
trades off between accuracy and computation cost.

1 Introduction

Training machine learning (ML) models on distributed data while providing formal privacy guarantee re-
garding the training data brings a great value in various business settings. Without a privacy protection
mechanism in place, data scientists may not be able to build any ML models. Suppose that data scien-
tists want to build ML models on customer data from multiple organizations. Under the traditional and
centralized solution, customer data need to be collected and managed by a central server. Data scientists
interact with the server and perform the required computations to generate ML models. This centralized
solution may not be always possible due to privacy risks and government regulations, such as the General
Data Protection Regulation (GDPR) [30].

To address potential privacy risks, privacy-enhancing technologies have emerged as promising solutions
that can help data scientists analyze customers’ data through the ML life-cycle without revealing private
information in a distributed/federated environment. The common techniques include Federated Learning
(FL) [21, 26, 43], Homomorphic Encryption (HE) [5, 14], Secure Multiparty Computation (MPC) [44] and
Differential Privacy (DP) [9], where each of these techniques has pros and cons. In FL, while data never
leave the data owners, the resulting model can be less accurate comparing to the centralized solution.

1

Additionally, intermediate model parameters may leak information about each party’s local training data.
Recent works have studied secure training of decision trees under federated learning with HE and/or MPC.
These techniques rely on cryptographic schemes and allow multiple parties to jointly train decision trees
without revealing each party’s private data. Also, they can provide as good accuracy as the centralized
solution. However, the output model may not necessarily be private and does not provide a formal DP
guarantee. It is well known that models are vulnerable to membership inference attack [28, 37]. In other
words, when models and/or prediction results are shared with data scientists or a third party, they can leak
private information about individuals in the training data.

Independently, DP decision trees have extensively studied in the context of centralized learning [25] where
decision trees are learned over training data by answering queries under DP. A resulting model that satisfies
DP can be publicly released for inference without degrading privacy loss. Because noise is introduced during
a model training to satisfy DP, there is a cost of accuracy loss. The accuracy is mainly affected by the total
privacy budget, the number of queries required to build decision trees, and the sensitivity of the queries.
Since the server, which produces the DP-trees, has access to the original data, the scheme does not work in
a federated environment where the participating parties do not want to disclose their private training data.

In order to protect the training data during both training and inference, a hybrid framework was intro-
duced in [41] that combines MPC and DP by training a centralized DP decision tree using MPC. However,
the model accuracy provided by this approach is limited to what can be achieved by the centralized DP
decision tree solutions [25, 41]. In addition, a synergy between MPC and DP is not well understood as the
two techniques are often considered as orthogonal problems. In fact, we provide a novel way of combining
MPC and DP that can provide a better accuracy than the existing approach under the same DP guarantee
while offering data privacy and model confidentiality. Overall, the existing solutions do not satisfy one or
more of the following properties:

• Data privacy: Each party’s private training data should not be disclosed during training and inference.

• Accuracy: The model should be as accurate as possible.

• Model confidentiality: This property is essential when the model has monetary value and disclosing
the model may open the door for more effective inference attacks.

• Query privacy: Query content and prediction result should be hidden from the ML service providers
since query content may contain sensitive information.

1.1 Problem Definition

We consider a cloud-assisted setting where data scientists build tree-based models using cloud computing
nodes for clients who own private data. Prediction results are shared with data scientists. Our goal is to
train a DP tree-based model as if the model were trained on a trusted server without participating parties
sharing their private training data. The proposed protocol achieves all four properties defined previously. In
order to maximize efficiency, we utilize a multi-server model where data owners/clients secretly share their
training data with three independent computing servers. Model training is performed by the servers using
secret shares, and the learned model is also secretly shared and stored at the servers. A user or data scientist
secretly shares its query with the servers who perform the required computation to derive the prediction
result in secret share format. The shares are sent to the user who then reconstructs the actual prediction
result. To summarize, we consider the following three classes of entities:

• Clients C: Each client Ci holds private training data and secretly shares its data with the cloud servers.

• Servers S: The computing servers manage secretly shared data from the clients and collaboratively
perform MPC-based training protocols. The servers also store the trained model and provide inference
service to data scientists/users.

• Users U : A user issues a query to the servers and receives shares of the prediction result. A user may
be affiliated with a client or is authorized to the inference service.

2

The proposed solution works for one or more clients. When there are multiple data owners, we assume
that the data are either horizontally or vertically partitioned. The multi-server setting offers a high-level of
scalability especially when a number of clients need to build an ML model on their aggregate data. Moreover,
it works for either horizontal or vertical data partitioning scheme.

1.2 Threat Model

We consider the semi-honest model [15] where an adversary follows the protocol but may try to infer the
other parties’ private information based on its own input, output and the messages received during protocol
execution. We also assume that the participating parties do not collude. On a high level, here we briefly
emphasize how data privacy is achieved from the perspective of each entity group:

• Clients: Each client secretly shares its data with the servers and does not participate in any other
computations related to model training and inference. Thus, it cannot learn any information about
the other clients’ training data.

• Servers: They only perform computations on secretly shared data, and the original data are never
reconstructed at the servers. In addition, any intermediate results, accessible to the servers, are either
secretly shared or randomized. As a consequence, the servers cannot learn any information about the
training data, except for certain domain knowledge, e.g., the domain size of each attribute.

• Users: Because the prediction result is differentially private, the user cannot learn anything about the
training data beyond what is allowed by the DP privacy budget.

1.3 Our Contribution

Adopting the multi-server setting, we design and implement MPC protocols for training tree-based ML
models. Our protocols satisfy: data privacy, high model accuracy, and model confidentiality, and query
privacy. Our solutions work for any number of clients and users, but it requires at least three independent
computing servers to perform secret sharing based MPC computations. In summary, this work makes several
significant contributions:

• We propose a novel way of combining MPC and DP for tree based ML models that requires less amount
of noise and with provable DP guarantee.

• A formal privacy proof is provided to theoretically justify that our approach can achieve the same ϵ-DP
by only adding noise at the leaf level.

• Inspired by the high level discussions given in [8], we develop concrete and fully secure ID3 tree
generation and prediction protocols.

• Our protocols are implemented in a real distributed environment to generate extensive empirical data.
The results are consistent with our design and theoretical analysis, e.g., up to 29% accuracy improve-
ments on benchmarks like the Adult dataset.

The existing work most relevant to ours is discussed in Appendix A.

2 The Enhanced MPC+DP Framework

To completely hide all intermediate information about the data and keep the tree secret, every non-leaf node
must have the same number of branches. This can be achieved by adding dummy values to each attribute
so that every attribute Ai ∈ A has the same domain size of w = maxi |dom(Ai)|. In other words, we will
build a complete w-ary tree except for leaf nodes with |dom(A0)| labels where A0 denotes the class attribute.
Also, the stopping criterion only checks if the tree reaches the maximum depth.

3

Before executing the model generation protocol, each data owner needs to locally pre-process its data. We
assume that data owners apply consistent pre-processing strategies, such at discretization, handling missing
values, etc. In addition, data integration at the servers can be tricky. Under the vertical partition scheme, the
data owners generate one hot-encodings for their attributes and then secretly share the encodings with the
three computing servers. The servers need to store the shares in the same ordering which can be guaranteed
easily even if they do not know the data schema and attribute domains. Detailed discussions on our proposed
secure tree generation and prediction protocols are provided in Appendix B and Appendix C respectively.

3 Experimental Results

We empirically evaluate the model accuracy and efficiency of our proposed ODP+FMPC-ID3 protocol
(Algorithm 1) comparing to the existing solution CDP+PMPC-ID3. We also implemented MPC-ID3
which offers identical accuracy as the non-secure ID3 and serves as the baseline for accuracy evaluation. All
implementation were written in python, and we used the MPyC library [36] for basic MPC operations. In
our experiments, we use the following three real-world datasets: Titanic [29], Heart [20] and Adult [3]. All
datasets have binary class labels. For the utility evaluation, all experiments are performed over 5 different
80-20 train-test splits. We measure the accuracy and ROC AUC on the test set. To evaluate protocol
efficiency, we run secure 3-party computations where all experiments are repeated at least 3 times on a 80-20
train-test split. We measure the runtime and the network traffic for training and inference. The network
traffic refers to the total amount of messages each party received during the computation.

• Accuracy Evaluation: To evaluate accuracy, we mainly focus on three parameters: privacy loss ϵ,
tree depth and DP mechanisms (Laplace vs. Exponential). The results are presented in Appendix D.

• Efficiency Evaluation: We show the runtime and the network traffic of training ID3 for our solution
and the existing work under a fixed ϵ of 1.0. We varied the maximum tree depth from 2 to 5 for each
dataset. The main results are given in Appendix E.

In summary, comparing to the existing solution, our proposed protocol provides between 22% to 29%
accuracy improvement. However, our solution is computationally more expensive and incurs larger amount
of network traffic.

4 Conclusion and Future Work

In this paper, we proposed a new approach for building a differentially private decision tree. Utilizing MPC to
its max, the decision tree can be kept hidden even during model prediction. As a result, our solution achieves
(1) data privacy, (2) high model accuracy, (3) model confidentiality and (4) query privacy. Furthermore, our
solution can be naturally extended to random forest model.

The main drawback of our solution is its efficiency. As a future research direction, we will explore
more efficient ways to construct a fully secure protocol for generating decision trees. One potential solution
is to design customized MPC functionalities for our specific ML application. For example, since secure
comparison has been used extensively in the sub-protocols, a more efficient secure comparison can greatly
improve the overall protocol efficiency. In addition, the efficiency of the prediction protocol could be improved
by directly using secret shares to represent attributes for the internal nodes instead of the vector indicator
representation. However, the challenge is to develop an efficient and customized equality test or attribute
selection sub-protocol. We will also investigate a tighter bound on DP guarantee of our random forest
solution. By utilizing the additional randomness among the sub-samples, we may be able to derive a more
precise DP bound for the random forest.

4

References

[1] Mark Abspoel, Daniel Escudero, and Nikolaj Volgushev. Secure training of decision trees with continuous
attributes. Cryptology ePrint Archive, 2020.

[2] Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: Tight analyses
via couplings and divergences. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018.

[3] Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

[4] Mariusz Bojarski, Anna Choromanska, Krzysztof Choromanski, and Yann LeCun. Differentially-and
non-differentially-private random decision trees. arXiv preprint arXiv:1410.6973, 2014.

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Trans. Comput. Theory, 6(3), jul 2014.

[6] Leo Breiman and JH Friedman. Ra olshen und cj stone. Classification and regression trees, 1984.

[7] Shorya Consul and SA William. Differentially private random forests for regression and classification.
Association for the Advancement of Artificial Intelligence, 2021.

[8] Sebastiaan De Hoogh, Berry Schoenmakers, Ping Chen, and Harm op den Akker. Practical secure
decision tree learning in a teletreatment application. In Financial Cryptography and Data Security:
18th International Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected
Papers 18, pages 179–194. Springer, 2014.

[9] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pages 265–284. Springer, 2006.

[10] Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca Pampaloni, and Ivan Pryvalov. Differentially
private data aggregation with optimal utility. In Proceedings of the 30th Annual Computer Security
Applications Conference, pages 316–325, 2014.

[11] Sam Fletcher and Md Zahidul Islam. A differentially private random decision forest using reliable signal-
to-noise ratios. In AI 2015: Advances in Artificial Intelligence: 28th Australasian Joint Conference,
Canberra, ACT, Australia, November 30–December 4, 2015, Proceedings 28, pages 192–203. Springer,
2015.

[12] Sam Fletcher and Md Zahidul Islam. Differentially private random decision forests using smooth sensi-
tivity. Expert systems with applications, 78:16–31, 2017.

[13] Arik Friedman and Assaf Schuster. Data mining with differential privacy. In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 493–502, 2010.

[14] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First
Annual ACM Symposium on Theory of Computing, STOC ’09, page 169–178, New York, NY, USA,
2009. Association for Computing Machinery.

[15] Oded Goldreich. The Foundations of Cryptography, volume 2, chapter General Cryptographic Protocols.
Cambridge University Press, 2004.

[16] Koki Hamada, Dai Ikarashi, Ryo Kikuchi, and Koji Chida. Efficient decision tree training with new
data structure for secure multi-party computation. arXiv preprint arXiv:2112.12906, 2021.

5

[17] Naoise Holohan, Stefano Braghin, Pól Mac Aonghusa, and Killian Levacher. Diffprivlib: the IBM
differential privacy library. ArXiv e-prints, 1907.02444 [cs.CR], July 2019.

[18] Jun Hou, Qianmu Li, Shunmei Meng, Zhen Ni, Yini Chen, and Yaozong Liu. Dprf: a differential privacy
protection random forest. Ieee Access, 7:130707–130720, 2019.

[19] Geetha Jagannathan, Krishnan Pillaipakkamnatt, and Rebecca N Wright. A practical differentially pri-
vate random decision tree classifier. In 2009 IEEE International Conference on Data Mining Workshops,
pages 114–121. IEEE, 2009.

[20] SteinbrunnWilliam Pfisterer Matthias Janosi, Andras and Robert Detrano. Heart Disease. UCI Machine
Learning Repository, 1988. DOI: https://doi.org/10.24432/C52P4X.

[21] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, et al. Advances and open
problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[22] Marcel Keller. Mp-spdz: A versatile framework for multi-party computation. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, CCS ’20, page 1575–1590, New
York, NY, USA, 2020. Association for Computing Machinery.

[23] Nhan Khanh Le, Yang Liu, Quang Minh Nguyen, Qingchen Liu, Fangzhou Liu, Quanwei Cai, and
Sandra Hirche. Fedxgboost: Privacy-preserving xgboost for federated learning. arXiv preprint
arXiv:2106.10662, 2021.

[24] Qinbin Li, Zhaomin Wu, Zeyi Wen, and Bingsheng He. Privacy-preserving gradient boosting decision
trees. Proceedings of the AAAI Conference on Artificial Intelligence, 34(01):784–791, Apr. 2020.

[25] Samuel Maddock, Graham Cormode, Tianhao Wang, Carsten Maple, and Somesh Jha. Federated
boosted decision trees with differential privacy. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages 2249–2263, 2022.

[26] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Aarti Singh and Jerry
Zhu, editors, Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,
volume 54 of Proceedings of Machine Learning Research, pages 1273–1282. PMLR, 20–22 Apr 2017.

[27] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’07), pages 94–103. IEEE, 2007.

[28] Shagufta Mehnaz, Sayanton V. Dibbo, Ehsanul Kabir, Ninghui Li, and Elisa Bertino. Are your sensitive
attributes private? novel model inversion attribute inference attacks on classification models. In 31st
USENIX Security Symposium (USENIX Security 22), pages 4579–4596, Boston, MA, August 2022.
USENIX Association.

[29] Vinicius Barbosa Paiva. The Complete Titanic Dataset. https://www.kaggle.com/datasets/vinicius150987/titanic3,
2020.

[30] European Parliament and of the Council. Regulation (eu) 2016/679 of the european parliament and
of the council of 27 april 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing directive 95/46/ec (general data
protection regulation), 2016.

[31] Abhijit Patil and Sanjay Singh. Differential private random forest. In 2014 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), pages 2623–2630. IEEE, 2014.

[32] Sikha Pentyala, Davis Railsback, Ricardo Maia, Rafael Dowsley, David Melanson, Anderson Nascimento,
and Martine De Cock. Training differentially private models with secure multiparty computation. arXiv
preprint arXiv:2202.02625, 2022.

6

[33] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set intersection
using permutation-based hashing. In 24th USENIX Security Symposium (USENIX Security 15), pages
515–530, Washington, D.C., August 2015. USENIX Association.

[34] J. Ross Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

[35] J Ross Quinlan. Program for machine learning. C4. 5, 1993.

[36] Berry Schoenmakers. MPyC: Multiparty Computation in Python.
https://www.win.tue.nl/ berry/mpyc/, 2018.

[37] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pages 3–18,
2017.

[38] K.K.A. Thissen. Achieving Differential Privacy in Secure Multiparty Computation. PhD thesis, Master’s
Thesis, Technische Universiteit Eindhoven, Eindhoven, 2019.

[39] Zhihua Tian, Rui Zhang, Xiaoyang Hou, Jian Liu, and Kui Ren. Federboost: Private federated learning
for gbdt. arXiv preprint arXiv:2011.02796, 2020.

[40] Rui Wang, Oğuzhan Ersoy, Hangyu Zhu, Yaochu Jin, and Kaitai Liang. Feverless: Fast and secure
vertical federated learning based on xgboost for decentralized labels. IEEE Transactions on Big Data,
2022.

[41] Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi. Privacy preserving vertical
federated learning for tree-based models. Proc. VLDB Endow., 13(12):2090–2103, jul 2020.

[42] Bangzhou Xin, Wei Yang, Shaowei Wang, and Liusheng Huang. Differentially private greedy decision
forest. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2672–2676. IEEE, 2019.

[43] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. ACM Trans. Intell. Syst. Technol., 10(2), jan 2019.

[44] Andrew C. Yao. How to generate and exchange secrets. In 27th Annual Symposium on Foundations of
Computer Science (sfcs 1986), pages 162–167, 1986.

[45] Samuel Yeom, Matt Fredrikson, and Somesh Jha. The unintended consequences of overfitting: Training
data inference attacks. CoRR, abs/1709.01604, 2017.

A Related Work

Differentially private decision trees have been well studied in the centralized setting, including decision trees,
random forests and XGBoost [4, 7, 11–13,18,24,42]. However, in the centralized setting, a party who builds
a model is assumed to have access to the entire training dataset. Orthogonally, MPC-based decision tree
training has been studied where a model is learned on secret-shared data [1, 8, 16]. Hoogh et al. proposed
MPC-based protocols for an ID3-based tree algorithm for cases of revealing and hiding the tree [8]. Recent
works have focused on a secure CART-based tree algorithm while keeping the model secret [1, 16]. While
the training data are protected, those protocols do not provide DP guarantees and thus are susceptible to
membership inference attacks [37,45].

The combination of MPC and DP for tree-based models is considered in several works, especially in the
context of federated learning where DP is involved in various contexts. One common usage of DP is to
replace cryptographic techniques for efficiency gain. This approach is computationally efficient, but it incurs
a significant loss in utility due to the added noise to achieve local DP [23,39].

7

Another usage is to train DP models in the federated setting to make them robust to membership
inference attacks, which align with our motivation [25,40,41]. Maddock et al. provided a general framework
of learning DP gradient boosted decision tree models in a federated setting [25]. Their framework uses secure
aggregation-based MPC and DP. However, since the majority operations are performed locally at each party,
DP techniques that require centralized evaluation, e.g., the Exponential mechanism, were not considered.
This can be a limitation since many DP decision tree-based algorithms require the Exponential mechanism to
provide a good accuracy. Our framework relies on a secret-sharing scheme and thus can completely simulate
a centralized DP learning in a federated setting. Wu et al. briefly introduced how to train a centralized DP
decision tree with an MPC framework in a federated setting [41]. Their approach of combining MPC and
DP during tree generation process is very different from ours (adding noise at the leaf level and producing
more accurate results), and it only works for vertically partitioned situation. Furthermore, they do not have
an implementation and empirical evaluation of the hybrid framework of MPC and DP and thus efficiency of
the framework was not clear.

Another essential and often overlooked aspect is that when analyzing DP guarantee, the existing work
on DP-tree models neglects the fact that the tree structure itself can reveal information about the training
data, and their DP analyses ignore the impact of the tree structure. Therefore, the existing solutions may
not achieve the expected DP guarantee. As far as we know, there is no existing work that comprehensively
analyzes the connection between MPC and DP for decision trees from the perspective of privacy, accuracy
and efficiency. This is because MPC and DP are often considered orthogonal problems. However, we will
show that the existing way of combining MPC and DP can result in sub-optimal performance. In addition,
by taking advantage of the inherent privacy guarantee of an MPC protocol, we will theoretically demonstrate
that adding noise to the leaf nodes (and less noise overall) is sufficient to achieve the same level of DP while
simultaneously improving accuracy comparing to the existing approaches.

B The Tree Generation Protocol

We adopt the following notation conventions:

• [x]: secret shares of x, and we use bold lower case letter to represent a vector: [xi] represents the shares
of its i-th component of vector x. We also use capital letter to represent a multi-dimensional data or
a vector.

• D: the dataset represented as a set of one-hot encodings. D is three-dimensional: Di,j,k represents the
k-th component of the j-th one-hot encoding of the i-th attribute. In other words, Di is matrix and a
collection of one-hot encodings for attribute Ai.

• T : a binary vector representing if a tuple is in a dateset.

• R: a set of attribute indices (excluding class attribute index 0) and R a binary vector of size |R|
indicating the available attributes for the current recursive call.

• h: the tree depth is bounded by 1 ≤ h ≤ |A − {A0}|.

• [x] • [y]: represent a secure dot product between two secretly shared vectors.

• [x]× [y]: represent secure component-wise multiplications between two secretly shared vectors.

The key steps of our tree generation protocol (Algorithm 1) include:

• Compute the class partitions and frequencies (Steps 5-8): derive a binary vector Ci for each
class i. Ci,j = 1 implies the j-th tuple belongs to class i, and 0 otherwise. These vectors are used to
derive class frequencies which are stored in τ . Each frequency is DP randomized.

• Check the stopping condition and derive the majority class (Steps 9-11): When h reaches 0,
the protocol computes the majority class returned as the leaf label.

8

• Compute the quality scores (Steps 12-14): the Ci vectors derived from the previous steps are
used by the MAX protocol (Algorithm 2). At step 14, the scores for the available attributes are kept
unchanged, but the scores for the other attributes are set to 0 so that these attributes would not be
chosen for the current node.

• Select the best attribute and its encoding (Steps 15-19): the argmax protocol returns the index
of an attribute whose quality score is the maximum. At step 16, the index is converted into a vector
representation using the Indicator protocol (see Algorithm 3 for detail). Then one hot encodings of Ak

are retrieved and stored in X.

• Partition the data and recursively build sub-trees (Steps 20-22): At step 21, [T]× [Xi] produces
a binary vector that represents the data partitioned based on Ak,i. [R] − [k] means that the chosen
attributed is removed from further consideration. Then a sub-tree is built with each data partition
with tree height reduced by one.

Note that the dummy values are represented as zero vectors. As a result, they have no effect on the MAX
protocol, and the quality scores for all attributes are unaffected by the dummy values. Although the resulting
tree model has branches generated from these dummy values, they do not interfere with or affect the result
of model inference tasks according to our prediction protocol. Section C provides more details.

Quality metric. There are various quality metrics that determine the best split. While popular metrics
are information gain or Gini index, some works explore the median or the max operator. In the context
of DP, since the choice of quality metrics affects the model accuracy, the max operator, which has a lower
sensitivity, has shown to have a better performance than the other metrics [13]. For this reason, we consider
the max operator as the quality metric for choosing the best split attribute. The max operator corresponds
to the misclassification rate by picking the class with the highest frequency, which has the sensitivity of 1:

q(D,Ai) =
∑
j∈Ai

maxc∈A0

(
DAi,j

•DA0,c

)
(1)

The MAX protocol presented in Algorithm 2 is our MPC implementation of the max operator according to
Equation 1.

B.1 Complexity Analysis

For MPC protocols, the asymptotic complexity is often based on the number of secure multiplications (SM).
Since secret sharing based secure addition does not require any communication, its complexity is negligible
comparing to SM. First, we analyze the complexity for each sub-protocol, and let l represent the share size
in bits:

• argmax([x]): this protocol can be implemented using |[x]| − 1 secure comparisons (SC), each of which
has a complexity of O(l). Thus, the complexity for argmax is O(l|[x]|).

• MAX([Di], [C], u, w) → [γi]: since Ci has a size of n, each secure dot product requires n SMs. There
are u dot products. The max protocol (step 2 of Algorithm 2) can be implemented using u − 1 SCs.
As a result, the total complexity for the MAX protocol is O((n+ l)wu).

• Indicator(m, [k]) → [k]: the protocol requires m SCs, so it complexity is bounded by O(lm).

Next we estimate the complexity of each major component:

• Steps 5-8: there are u component-wise secure multiplications with size n each, so that complexity is
O(nu).

• Steps 9-11: the size of τ is u; thus, the complexity is bounded by O(lu).

9

• Steps 12-13: since MAX is called m times, the complexity is O(m(n+ l)wu).

• Step 14: requires O(m) SM operations.

• Step 15: the size of γ is m; thus, the complexity is bounded by O(lm).

• Step 16: the complexity is O(lm).

• Steps 17-19: there are wn secure dot products of size m, so the complexity is bounded by O(mnw).

• Steps 20-22: there are w recursive calls, and before each call, a secure component-wise vector multipli-
cation is performed. As a result, the complexity is bounded by O(nw) before performing the recursive
calls.

It is clear that the complexities at steps 12-13 dominate the rest of the protocol before each recursive call.
In addition, since the vector sizes do not change for all recursive calls, the total complexity is bounded by:
O
(
wh−1m(n+ l)wu

)
, for 1 ≤ h ≤ m.

B.2 Privacy/Security Analysis

As stated before, our solution achieves (1) data privacy, (2) high model accuracy, (3) model confidentiality
and (4) query privacy. For high model accuracy, we will demonstrate it in two ways: theoretically prove
less noise is needed to achieve the same level of DP, and empirically justify the accuracy improvement using
three real world datasets. For the others, we need to prove the following:

• The training data are not disclosed when building the tree.

• The final tree model and user queries are never disclosed during prediction.

• The tree is ϵ-DP.

The first two are straightforward to prove since we adopt the standard MPC functionalities to implement
the MPC-DP mechanisms and the MPC-decision tree generation. Intuitively speaking, nothing is disclosed
during model generation and prediction, except that a user obtains the final prediction result. As long as
the servers follow the protocol and the secret sharing scheme is secure, so does our protocol. On the other
and, since our way of combining DP and MPC is new, we need to prove the resulting protocol satisfies ϵ-DP.
The key idea is to show that when the tree structure is hidden, adding less amount of noise to the leaf nodes
is sufficient to achieve the same level of DP comparing to the existing solution where DP noises are also
added to the attribute selection process for the internal nodes. Let T1 and T2 are two decision trees with
the following properties:

• T1: The tree structures are completely hidden including the leaf labels. In addition, before leaf labels
are derived, noises are securely added to achieve ϵ-DP. During prediction, the users only learn the
predicted result. The entire process can be achieved using MPC. (Note that T1 may be more private
than ϵ-DP since the leave labels are hidden.)

• T2: The tree structures are known but noises are added during tree generation process to achieve ϵ-DP.
More specifically, MPC techniques are adopted to compute the scores for each attribute. Using MPC,
noises are securely added to the scores before selecting the best split or attribute. After the selection,
the chosen attribute is disclosed. Then the process repeats to build the rest of the tree. For prediction
purpose, the DP-tree can be shared with the users.

It is well-known that when an adversary has black-box access to a decision tree model, the adversary can
reconstruct the tree with very high accuracy by using a number of queries and their prediction results. As a
result, we may ask that even though T1 is completely hidden from anyone, is it still possible for an adversary
to reconstruct another tree T̂1 (with black-box access to T1) that is less private than T1 or T2? The short

10

answer is no because when deriving T1, we followed the sequential composition theorem and all intermediate
computations and results are implemented using MPC protocols. If T̂1 is less private than T1 or T2, then
either the composition theorem is incorrect or the MPC protocol leaks non-negligible information. A more
formal analysis is given next.

B.2.1 T1 is ϵ-Differentially Private

Here we prove that adding ϵ-DP noise at each leaf node independently guarantees T1 is ϵ-DP. Let f be the
mechanism that securely selects the best attribute for the internal nodes of T1:

• f([D⃗], [Λ⃗])→ [D⃗l], [D⃗r], [Λ⃗l], [Λ⃗r], [a], [ta]

Without loss of generality, we assume each attribute splits the data into two partitions: left and right denoted
by D⃗l and D⃗r respectively. All D⃗, D⃗l and D⃗r are binary vectors with the same size bounded by the size
of the dataset, and the [] notation indicates the vectors are secretly shared component-wise. Λ⃗, Λ⃗l and Λ⃗r

are also binary vectors with the same size determined by the number of attributes. The chosen attribute is
denoted by a with threshold ta. All inputs and outputs of f are secretly shared, and the height of the tree is
fixed to a public parameter h indicating the tree has 0, 1, . . . , h layers. D⃗l and Λ⃗l (or D⃗r and Λ⃗r) are inputs
to build the left (or right) branch of the sub-tree rooted at a. [a] and [ta] are the actual output of each tree
layer. Let g be a function for the leaf node:

• g([D⃗])→ [c]

where D⃗ represents a set of tuples at the current leaf node and c is the class label for this node. The class
label is chosen using the Laplace mechanism with privacy budget ϵ and sensitivity 1. Both D⃗ and c are
secretly shared. Based on f and g, we define a layer function L as follows:

• Lk = ⟨fk
1 , . . . , f

k
2k⟩, for k ∈ {0, h− 1}.

• Lh = ⟨g1, . . . , g2h⟩.

Each layer is a parallel composition of either the f or the g functions. Next we show f is 0-DP. Suppose
D⃗ and D⃗′ represent two neighboring datasets with the same vector size. (Note that we can always make
them the same size by adding a dummy entry to the smaller vector.) The f function produces the following

outputs on the two neighboring datasets D⃗ and D⃗′:

• f([D⃗], [Λ⃗])→ [D⃗l], [D⃗r], [Λ⃗l], [Λ⃗r], [a], [ta]

• f([D⃗′], [Λ⃗′])→ [D⃗′
l], [D⃗

′
r], [Λ⃗

′
l], [Λ⃗

′
r], [a

′], [ta′]

The output of f are secret shares from the same domain F . Since secret shares are uniformly random in F ,
the adversary cannot tell the difference between the two outputs. That is:

• Pr(f([D⃗], [Λ⃗]) ∈ F) = Pr(f([D⃗′], [Λ⃗′]) ∈ F)

This implies that ϵ = 0 and f is 0-DP. In addition, since the layer function Lk is a parallel composition of
independent calls of f , the output distributions of Lk on two neighboring datasets are the same. Therefore,
Lk is also 0-DP. The same analysis is applicable for g and Lh, and we conclude Lh is 0-DP. Let p be the
prediction function:

• p([T1], [τ])→ cτ

where [T1] indicates the secret shares of T1, a collection of outputs from each layer function Lk, Lh, and τ is
a secretly shared user record. cτ is the classification result only known to the user. Because the class labels
are ϵ-DP, based on the robustness to post-processing property of DP, the prediction result is ϵ-DP, and so
does T1.

Another important consequence of the above proof is that since noise is only added at the leaf level, the
total amount of noise added to the tree in our approach is significantly less than the existing solution. The
empirical evaluation is presented in Section 3.

11

Algorithm 1 ODP+FMPC-ID3([D], [T], [R], R, h, ϵ)→ {[k], {[tr1], . . . , [trw]}}
1: u← |[D0]| ▷ the number of classes
2: m← |R| ▷ the number of attributes
3: n← |[D0,0]| ▷ the number of tuples
4: w ← |[D1]| ▷ the domain size of each attribute
5: for i← 1 to u do
6: [Ci]← [D0,i]× [T] ▷ tuples belong to class i
7: [τ i]←

∑n
j=1[Ci,j] ▷ the size of class i

8: [τ i]←MPC-LM([τ i], ϵ, 1) ▷ DP class sizes

9: if h = 0 then
10: [ci∗]← argmax([τ]) ▷ the class with the largest size
11: return {[ci∗]} ▷ the leaf label

12: for i← 1 to m do
13: [γi]← MAX([Di], [C], u, w) ▷ the i-th attribute’s score

14: [γ]← [γ]× [R] ▷ keep the scores of available attributes
15: [k]← argmax([γ]) ▷ the attribute index with the max score
16: [k]← Indicator(m, [k]) ▷ converting k into a vector format
17: for i← 1 to w do
18: for j ← 1 to n do
19: [Xi,j]← [D1,i,j , . . . , Dm,i,j] • [k] ▷ encoding of Ak

20: for i← 1 to w do
21: [Ti]← [T]× [Xi]
22: [tri]← ODP+FMPC-ID3([D], [Ti], [R]− [k], R, h− 1, ϵ)

23: return {[k], {[tr1], . . . , [trw]}}

Algorithm 2 MAX([Di], [C], u, w) → [γi]

Require: [Di] is a set of w one-hot encodings of Ai. [C] is a set of binary vectors, and [Cj] indicates if
a tuple belongs to class j. w defines the domain size of all attributes, and u indicates the number of
classes.

1: for j ← 1 to w do
2: [τ j]← max([Di,j] • [C1], . . . , [Di,j] • [Cu])

3: [γi]←
∑w

j=1[τ j]
4: return [γi]

Algorithm 3 Indicator(m, [k]) → [k]

Require: m specifies the number of attributes, and k is a positive integer in {1, . . . ,m}.
1: for i← 1 to m do
2: [ki]← Equal(i, [k]) ▷ check if k is equal to i

3: return [k]

C The Prediction Protocol

Let A = A0, A1, A2, A3, A4, A5 where A0 is the class attribute. Ignoring the class attribute, the rest can be
represented as indicator vectors {10000, 01000, 00100, 00010, 00001} from A1 to A5 respectively. Suppose that
each attribute Ai has three values represented by {100, 010, 001}, corresponding to {ai1, ai2, ai3} respectively
or the tree branches from left to right. Let Γ = {Γ1,Γ2} = {Γ1, {Γ21,Γ22,Γ23}} represent a decision tree
where Γ1 is the root attribute and Γ2 is a set of children nodes of Γ1. If Γ1 is a leaf node, then it is set

12

to c, one of the class labels; otherwise, it is defined recursively. As an example, a partial tree is given in
Figure 1. The complete tree is full 3-nary tree; that is, each internal node has three branches. Due to space
limitation, we only present part of it. According to the figure, Γ1 represents A2 as the chosen root of Γ, then
Γ21, Γ22 and Γ23 correspond to the sub-trees rooted at A1, A3 and A5 respectively. Γ1 is represented using
A2’s indicator vector 01000. Let a tuple t = [2, 3, 3, 1, 1] represented as a 3-by-5 matrix:0 0 0 1 1

1 0 0 0 0
0 1 1 0 0

ti indicates the i-th row of the matrix, and |ti| gives the number of attributes. The number of rows in
t is denoted by w specifying the domain size of each attribute. In this example, |ti| = 5 and w = 3.
The prediction protocol is given by Protocol 4. It derives the class label of a secretly shared record t

A2

A1

a21

A3

a22

A5

A1

c1

a11

c2

a12

c1

a13

a51

A3

a52

A4

a53

a23

Figure 1: A partial decision tree

Algorithm 4 Predict([t], [Γ]) → [c]

Require: [t] secret shares of a tuple being classified, [Γ] secret shares of the decision tree, and w denotes
the number of attributes.

1: if |[Γ]| = 1 then
2: return [Γ]

3: [Γ1], [Γ2]← [Γ]
4: for i← 1 to w do
5: [f i]← [ti] • [Γ1]

6: for i← 1 to w do
7: [ci]← Predict([t], [Γ2i])

8: [c]← [f] • [c]
9: return [c]

recursively. The tree Γ is also secretly shared based on its smallest elements. For example, Γ1 is secretly
shared component-wise of A2’s indicator vector at the top level of the tree. This recursively applies to the
other levels. At the leaf level, the class label c is secretly shared. The tree structure, a complete w-nary tree,
is preserved, so that we can easily check if Γ is a tree or a leaf node. At step 1 of the protocol. |[Γ]| = 1
indicates that [Γ] is a leaf node, and it is returned as the leaf label. Otherwise, [Γ] is decomposed into two
components [Γ1] and [Γ2]. At steps 4-5, the protocol retrieves the correct attribute at the current root whose
values serve as flags to indicate the right prediction path. At steps 6-7, the protocol makes w recursive calls
on the sub-trees. At the end, the results from each sub-recursive calls are combine to produce the shares of

13

the class label. The key observation is that there is only one path in the tree whose associated f i values are
all one. Thus, the results from all other paths are 0, and the result from the correct path is preserved.

D Accuracy Evaluation

To evaluate accuracy, we mainly focus on three parameters: privacy loss ϵ, tree depth and DP mechanisms
(Laplace vs. Exponential).

D.1 Varying Privacy Loss

We evaluate the accuracy and the ROC AUC of different variants of the ID3 algorithm. Figure 2 shows the
relationship between model utility and the privacy loss ϵ with various datasets under the fixed tree depth.
For Titanic, Heart, and Adult, the maximum depths are set to 4, 3, and 5, respectively. Regarding the
privacy loss parameter, for Titanic and Heart, the values of ϵ are varied from 0.2 to 2.0. For Adult, a larger
dataset, the values of ϵ are varied from 0.005 to 1.0. We did not use smaller ϵ values for Titanic and Heart
because ϵ less than 0.2 would make the accuracy below 0.5 which causes the model useless.

The plots compare the accuracy of our proposed solution ODP-FMPC-ID3 against that of the existing
solution CDP-PMPC-ID3 under the same ϵ-DP guarantee, benchmarking with MPC-ID3. Note that the
accuracy of MPC-ID3 matches that of non-private centralized learning. As observed in Figure 2, the accuracy
of our solution consistently performs better. For example, when ϵ = 0.2, our solution produced an accuracy
of 0.71 and ROC AUC of 0.71 for Heart. Whereas, under the same ϵ, the existing solution generated an
accuracy of 0.575 and ROC AUC of 0.572. This amounts to 23.5% and 24.1% improvements respectively. For
the Adult dataset, ϵ = 0.005, our solution produced an accuracy of 0.755 and ROC AUC of 0.65. However,
under the same ϵ, the existing solution only generated an accuracy of 0.585 and ROC AUC of 0.525. Thus,
our solution amounts to 29.1% and 23.8% improvements. For Adult dataset, when ϵ is between 0.1 and
1.0, our approach even outperforms the non-private centralized learning. This would be the effect of the
randomness introduced by DP, acting as regularization. Our solution performs better as ϵ gets smaller.

D.2 Varying Tree Depth

We also evaluate the model accuracy with different tree depths, which is shown in Figure 3. We measure
ROC AUC under a fixed ϵ while varying the tree depths from 2 to 5. We use ϵ = 0.2, 0.2, 0.1 for the three
datasets Titanic, Heart, and Adult respectively. The performance trends are the same for other ϵ values and
the accuracy metric.

In DP decision trees, the tree depth affects model accuracy. As a tree becomes deeper, training samples
at each leaf node become very small and thus can hinder accuracy. Because DP leaf updates are based on the
frequency of the class counts, smaller counts are susceptible to DP noise. As seen in Figure 3, since Titanic
and Heart are smaller datasets, increasing the tree depth greatly lowers the model accuracy. However, for
Adult dataset, since the data size is much bigger, under the chosen ϵ = 0.1, increasing the tree depth from
2 to 5 does not degrade the accuracy. It simply requires a deeper tree to learn a model. On the other hand,
this is not the case when using much smaller values of ϵ.

As also shown in Figure 3, our solution consistently provides a better accuracy for each of the maximum
tree depths. In the existing solution, the privacy loss budget is split across different heights of tree. Thus,
each node of the tree gets a budget of ϵ/(h + 1), where h is the maximum depth of the tree. Whereas, for
our proposed approach, the full privacy budget ϵ is used for each leaf node. As a result, our solution is more
robust to the maximum depth.

D.3 Comparison between Laplace and Exponential

In the previous results, we use the Laplace mechanism for DP leaf updates for both approaches. Here,
we additionally show the model accuracy when using the Exponential mechanism. While Fletcher et al.

14

(a) Titanic - Accuracy (b) Heart - Accuracy (c) Adult - Accuracy

(d) Titanic - ROC AUC (e) Heart - ROC AUC (f) Adult - ROC AUC

Figure 2: Model accuracy vs. privacy loss budget ϵ

(a) Titanic (b) Heart (c) Adult

Figure 3: Model accuracy vs. tree depth

15

(a) Titanic (b) Heart (c) Adult

Figure 4: Accuracy comparison on different DP leaf update methods

suggested an advantage of the Exponential mechanism against the Laplace mechanism for multi-class random
forest models [12], as far as we know, there is no consensus on which DP algorithm performs the best. In
fact, recent works use the Laplace mechanism for leaf updates [7, 18].

Figure 4 compares the accuracy of the Laplace mechanism and that of the Exponential mechanism,
varying privacy loss ϵ from 0.2 to 2.0 for Titanic and Heart and 0.005 to 1.0 for Adult. Similar to Figure 2,
the maximum depth is fixed for each plot, where h = 4, 3, 5 for Titanic, Heart, and Adult respectively. For
both approaches, the Laplace mechanism provides a better accuracy than the Exponential mechanism by up
to 5%. While with large values of ϵ, there is no huge difference between the two DP mechanisms, with small
values of ϵ, the Laplace mechanism consistently outperforms the Exponential mechanism.

E Efficiency Evaluation

We show the runtime and the network traffic of training ID3 for our solution and the existing work under
a fixed ϵ of 1.0 in Figure 5. We varied the maximum tree depth from 2 to 5 for each dataset. For each
approach, we have the two variants of the leaf update method, the Laplace mechanism-based update and
the Exponential mechanism-based update.

Overall, our solution is computationally more expensive for both runtime and network traffic. It relies on
the full MPC-based ID3 functionality, which is computationally more expensive than the partial MPC-based
ID3 used in the existing work. Especially, our approach builds a completely oblivious tree where every
non-leaf node has w branches, where w is the maximum domain size. Thus, the runtime and the network
traffic greatly increase as the depth of the tree increases. This is the tradeoff between accuracy and efficiency,
where a high accuracy observed in the enhanced framework was achieved by the computationally expensive
full MPC protocol that can hide the model. Building efficient MPC-based decision trees are independent of
our work, and it is still an active research area.

In addition, Figure 5 compares the efficiency of the MPC-based Laplace mechanism and the MPC-based
Exponential mechanism. While there was no clear distinction for the existing approach, we observed that
for our solution, the Laplace mechanism incurs less runtime and network traffic than the Exponential mech-
anism. The gap becomes very noticeable as we increase the maximum depth. The MPC-based Exponential
mechanism requires a number of MPC operations, including a very costly secure exponentiation evaluation.
The detailed cost analysis on MPC can be found in [10].

16

(a) Titanic - runtime (b) Heart - runtime (c) Adult - runtime

(d) Titanic - network traffic (e) Heart - network traffic (f) Adult - network traffic

Figure 5: Efficiency vs. tree depth

17

	Introduction
	Problem Definition
	Threat Model
	Our Contribution

	The Enhanced MPC+DP Framework
	Experimental Results
	Conclusion and Future Work
	Related Work
	The Tree Generation Protocol
	Complexity Analysis
	Security Analysis
	Privacy/Security Analysis
	T1 is -Differentially Private

	The Prediction Protocol
	Accuracy Evaluation
	Varying Privacy Loss
	Varying Tree Depth
	Comparison between Laplace and Exponential

	Efficiency Evaluation

