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Abstract

We study the problems of differentially private federated online prediction from experts against
both stochastic adversaries and oblivious adversaries. We aim to minimize the average regret on m

clients working in parallel over time horizon T with explicit differential privacy (DP) guarantees.
With stochastic adversaries, we propose an algorithm that achieves

√
m-fold speed-up of the per-

client regret compared to the single-player counterparts under both pure DP and approximate DP
constraints, while maintaining logarithmic communication costs. With oblivious adversaries, we
establish non-trivial lower bounds indicating that collaboration among clients does not lead to regret
speed-up with general oblivious adversaries. However, when there exists a low-loss expert, we show
that a new algorithm can achieve an m-fold regret speed-up under both pure DP and approximate
DP constraints over the single-player counterparts. Our lower bound indicates that Fed-SVT is nearly
optimal up to logarithmic factors. To the best of our knowledge, this is the first work examining the
online prediction from experts problem with DP guarantees in the federated setting.

1 Introduction

Federated Learning (FL) (McMahan et al., 2017) is a distributed machine learning framework, where
numerous clients collaboratively train a model by exchanging model update through a server. Owing
to its advantage in protecting the privacy of local data and reducing communication overheads, FL is
gaining increased attention in the research community, particularly in the online learning framework
(Mitra et al., 2021; Park et al., 2022; Kwon et al., 2023; Gauthier et al., 2023). Noticeable advancements
include various algorithms in federated multi-armed bandits (Shi et al., 2021; Huang et al., 2021; Li and
Wang, 2022; Yi and Vojnovic, 2022, 2023), federated online convex optimization (Patel et al., 2023; Kwon
et al., 2023; Gauthier et al., 2023), etc.

Meanwhile, differential privacy (DP) has been integrated into online learning, pioneered by Dwork
et al. (2010). In the single-client setting, Asi et al. (2022) studied different types of adversaries, developing
some of the best existing algorithms and establishing lower bounds. Within the federated framework,
although differentially private algorithms have been proposed for stochastic bandits (Li et al., 2020; Zhu
et al., 2021; Dubey and Pentland, 2022, 2020; Li et al., 2022; Zhou and Chowdhury, 2023; Huang et al.,
2023), to the best of our knowledge, federated online learning algorithms in the adversarial setting with
explicit DP considerations remain largely unexplored.

In this work, we focus on federated online prediction from experts (OPE) with rigorous differential
privacy (DP) guarantees. OPE (Arora et al., 2012) is a classical online learning problem under which, a
player chooses one out of a set of experts at each time slot and an adversary chooses a loss function. The
player incurs a loss based on its choice and observes the loss function. With all previous observations, the
player needs to decide which expert to select each time to minimize the cumulative expected loss. We
consider two types of adversaries in the context of OPE. The first type, stochastic adversary, chooses a
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distribution over loss functions and samples a loss function independently and identically distributed
(IID) from this distribution at each time step. The second type, oblivious adversary, chooses a sequence of
loss functions in advance. We aim to answer the following question: Can we design differentially private
federated OPE algorithms to achieve regret speed-up against both stochastic and oblivious adversaries?

2 Results, Techniques, and Discussion

2.1 Differentially private federated online prediction from experts (OPE)

Federated OPE consists of a central server, m clients and an interactive T -round game between an
adversary and an algorithm. At time step t, each client i ∈ [m] first selects an expert xi,t ∈ [d], and
then, the adversary releases a loss function li,t. Stochastic adversaries choose a distribution over loss
functions and sample a sequence of loss functions l1,1, . . . , lm,T in an IID fashion from this distribution,
while oblivious adversaries choose a sequence of loss functions l1,1, . . . , lm,T at the beginning of the game.

For federated OPE, the utility of primary interest is the expected cumulative regret among all clients
defined as:

Reg(T,m) =
1

m

 m∑
i=1

T∑
t=1

li,t(xi,t)− min
x⋆∈[d]

m∑
i=1

T∑
t=1

li,t(x
⋆)

 .

Differential privacy. We define differential privacy in the online setting following (Dwork et al.,
2010). If an adversary chooses a loss sequence S =

(
l1,1, . . . , lm,T

)
, we denote A(S) = (x1,1, . . . , xm,T )

the output of the interaction between the federated online algorithm A and the adversary. We say
S =

(
l1,1, . . . , lm,T

)
and S ′ =

(
l′1,1, . . . , l

′
m,T

)
are neighboring datasets if S and S ′ differ in a one element.

Definition 2.1 ((ε, δ)-DP). A randomized federated algorithm A is (ε, δ)-differentially private against an
adversary if, for all neighboring datasets S and S ′ and for all events O in the output space of A, we have

P[A(S) ∈ O] ≤ eεP
[
A
(
S ′
)
∈ O

]
+ δ.

Communication model. Our setup involves a central server facilitating periodic communication
with zero latency with all clients. Specifically, the clients can send “local model updates” to the central
server, which then aggregates and broadcasts the updated “global model” to the clients. We assume full
synchronization between clients and the server (McMahan et al., 2017).

2.2 Speed-up for stochastic adversaries.

For stochastic adversaries, we develop a communication-efficient algorithm Fed-DP-OPE-Stoch with DP
guarantees. The algorithm features the following elements in its design: 1) Local loss function gradient
estimation for global expert determination. To reduce communication cost, we propose to estimate the
gradient of each client’s previous loss functions locally, and only communicate these estimates to the
server instead of all previous loss functions. 2) Local privatization process. To satisfy the DP constraint,
we add noise to the local gradient estimate on the client side, which essentially builds a local differentially
private algorithm. The performance of Fed-DP-OPE-Stoch is summarized in the following theorem.

Theorem 2.2. Assume that the loss function li,t(·) is convex, α-Lipschitz, β-smooth w.r.t. ∥ · ∥1.
Fed-DP-OPE-Stoch (i) satisfies ε-DP and (ii) achieves the per-client regret of

Reg(T,m) = O

(
(α+ β) log T

√
T log d

m
+

√
αβ
√
T log T log d

m
1
4
√
ε

)
,

with (iii) a communication cost of O
(
m5/4d

√
Tεβ

α log d log T

)
.
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Notably, the regret for the single-player counterpart Asi et al. (2022) scales in O
(
log T

√
T log d+ log T log d

ε

)
.

This result is obtained under the small-β regime, i.e. β = O( 1
Tε ). Let β = O( 1

Tε ), Theorem 2.2 reduces to
the following corollary, which states that Fed-DP-OPE-Stoch achieves m1/4-fold speed-ups compared with
the single-client setting. The detailed implementation of Fed-DP-OPE-Stoch can be found in Appendix A.

Corollary 2.3. If β = O( 1
Tε ), then, Fed-DP-OPE-Stoch (i) satisfies ε-DP and (ii) achieves the per-client

regret of

Reg(T,m) = O

(
α log T

√
T log d

m
+

√
α log T log d

m
1
4 ε

)
,

with (iii) a communication cost of O
(
m5/4d log T

)
.

Finally, we remark that Fed-DP-OPE-Stoch can be slightly modified into a central differentially
private algorithm and achieves

√
m-fold speed-ups. Specifically, we change the local privatization process

to a global privatization process and add a Laplacian noise on the server side. This mechanism results in
less noise added and thus better utility performance.

2.3 Lower bounds for oblivious adversaries.

We establish new lower bounds for federated OPE with oblivious adversaries, applicable to both non-private
and private scenarios.

Theorem 2.4. For any federated OPE algorithm against oblivious adversaries, the per-client regret is
lower bounded by Ω(

√
T log d). Let ε ∈ (0, 1] and δ = o(1/T ), for any (ε, δ)-DP federated OPE algorithm,

the per-client regret is lower bounded by Ω

(
min

(
log d
ε , T

))
.

Theorem 2.4 states that with oblivious adversaries, the per-client regret under any federated OPE
is fundamentally independent of the number of clients m. In other words, collaboration among clients
does not lead to regret speed-up in this context, which in sharp contrast to the stochastic adversariy
framework. Theorem 2.4 also emphasizes the influence of the DP guarantees. Our lower bounds represent
the first non-trivial impossibility results for the federated OPE problem to the best of our knowledge.

We provide some insights to the reason why oblivious adversaries make FL lose its power in the
following. FL can potentially speed up the learning process by collecting more data at the same time to
gain better information to future predictions. In the stochastic setting, the advantage of collaboration lies
in the ability to collect more observations from the same distribution, which leads to variance reduction.
However, when facing oblivious adversaries, the problem changes fundamentally. Oblivious adversaries can
select loss functions arbitrarily, meaning that having more data does not necessarily help with predicting
their future selections.

2.4 Speed-up for oblivious adversaries under realizability assumption.

While Section 2.3 suggests that federated learning in oblivious adversaries fails to enjoy benefits in the
worst case, we show that realizability assumption entirely flips the result. First, we introduce the definition
of realizability.

Definition 2.5 (Realizability). A federated OPE problem is realizable if there exists a feasible solution
x⋆ ∈ [d] such that

∑T
t=1 li,t(x

⋆) = 0, ∀i ∈ [m]. If the best expert achieves small loss L⋆ ≪ T , i.e., there
exists x⋆ ∈ [d] such that

∑T
t=1 li,t(x

⋆) ≤ L⋆, ∀i ∈ [m], the problem is near-realizable.

Intuitively, collaboration is notably advantageous in this context, as all clients share the same goal
of reaching the zero-loss solution x⋆. As more clients participate, the shared knowledge pool expands,
making the identification of the optimal solution more efficient. Following this intuition, we propose
Fed-SVT, a new federated algorithm with the following theoretical guarantee.
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Theorem 2.6 (Upper bound with realizability). Let li,t ∈ [0, 1]d be chosen by an oblivious adversary under
near-realizability assumption. Then, Fed-SVT is ε-DP, the communication cost scales in O

(
mdT/N

)
,

and with probability at least 1− ρ, the pre-client regret is

Reg(T,m) = O

 log2(d) + log
(

T 2

N2ρ

)
log
(

d
ρ

)
mε

+ (N + L⋆) log

(
d

ρ

) .

Moreover, by changing the parameter setting, Fed-SVT is (ε, δ)-DP, the communication cost scales in
O
(
mdT/N

)
, and with probability at least 1− ρ, the pre-client regret is

Reg(T,m) = O

 log
3
2 (d)

√
log( 1δ ) + log

(
T 2

N2ρ

)
log
(

d
ρ

)
mε

+ (N + L⋆) log

(
d

ρ

)
Compared to the best upper bound O

(
log2 d+log T log d

ε

)
and O

(
log T log d+log3/2 d

√
log(1/δ)

ε

)
for the

single-player scenario (Asi et al., 2023), our results indicate an m-fold regret speed-up when N + L⋆ =

O
(

log T
mε

)
. Note that even if N + L⋆ = Ω

(
log T
mε

)
, the coefficient N + L∗ is independent with the privacy

budget ε. Therefore, federated learning in large m regime still presents significant benefit over single-client
setting. The detailed implementaion of Fed-SVT can be found in Appendix B. We further develop a lower
bound under the realizable oblivious adversary framework, which is presented as follows.

Theorem 2.7 (Lower bound with realizability ). Let ε ≤ 1 and δ ≤ ε/d. For any (ε, δ)-DP federated
OPE algorithm against oblivious adversaries in the realizable setting, the per-client regret is lower bounded
by Ω

(
log(d)
mε

)
.

Note that our lower bound (Theorem 2.7) scales in Ω
(

log d
mε

)
, which matches with the upper bound in

terms of m and ϵ, and is nearly optimal up to logarithmic factors.
Finally, a summary of our main results and how they compare with the state of the art is shown in

Table 1.

Table 1: Comparisons for Online Prediction from Experts under DP Constraints

Adversaries Algorithm (Reference) Model DP Regret Communication cost

Stochastic Limited Updates (Asi et al., 2022) SING ε-DP, (ε, δ)-DP O
(√

T log d+ log d log T
ε

)∗
-

Fed-DP-OPE-Stoch (Theorem 2.2) FED ε-DP O

(√
T log d

m + log d log T√
mε

)∗

O (md log T )

Oblivious
(Realizable)

Sparse-Vector (Asi et al., 2023) SING ε-DP O
(

log T log d+log2 d
ε

)
-

Fed-SVT (Theorem 2.6) FED ε-DP O
(

log T log d+log2 d
mε

)
O
(
m2dTε

)
Sparse-Vector (Asi et al., 2023) SING (ε, δ)-DP O

(
log T log d+log3/2 d

ε

)
-

Fed-SVT (Theorem 2.6) FED (ε, δ)-DP O
(

log T log d+log3/2 d
mε

)
O
(
m2dTε

)
Lower bound (Theorem 2.7) FED ε-DP, (ε, δ)-DP Ω

(
log d
mε

)
-

Oblivious

Private SD (Asi et al., 2022) SING ε-DP O
(√

T log d
ε

)
-

Private SD (Asi et al., 2022) SING (ε, δ)-DP O
(√

T log d+ T 1/3 log d
ε

)
-

Lower bound (Theorem 2.4) FED ε-DP, (ε, δ)-DP Ω

(
min

(
log d
ε , T

))
-

m: number of clients; T : time horizon; d: number of experts; ε, δ: DP parameters; SING and FED stand for single-client and
federated settings, respectively; ∗: the results are contingent upon the smoothness constraints of the loss functions. Detailed

outcomes under varying constraints are provided in Theorem 2.2.
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A Federated OPE with stochastic adversaries

In this section, we present the detail algorithm design of Fed-DP-OPE with stochastic adversaries
that achieves regret speed-up compared to the single-player setting under DP constraints with low
communication cost. We consider the loss functions l1,1(·), . . . , lm,T (·) to be convex, α-Lipschitz and
β-smooth w.r.t. ∥ · ∥1 in this section.

A.1 Intuition behind our algorithm design

To gain a better understanding of our algorithm design, we first elaborate the difficulties encountered
when extending prevalent OPE models to the FL setting under DP constraints. It is worth noting that
all current OPE models with stochastic adversaries rely on gradient-based optimization methods. The
central task in designing OPE models with stochastic adversaries lies in leveraging past loss functions to
guide the generation of expert predictions. Specifically, we focus on the prominent challenges associated
with the widely adopted Frank-Wolfe-based methods (Asi et al., 2022). This algorithm iteratively moves
the expert selection xt towards a point that minimizes the gradient estimate derived from the past loss
functions l1, . . . , lt−1 over the decision space X , where X = ∆d =

{
x ∈ Rd : xi ≥ 0,

∑d
i=1 xi = 1

}
, and

each x ∈ X symbolizes a probability distribution over d experts. With DP constraints, a tree-based
method is used for private aggregation of the gradients of loss functions (Asi et al., 2021).

In the federated setting, it is infeasible for the central server to have full access to past loss functions
due to the high communication cost. To overcome this, we employ a design of local loss function gradient
estimation for global expert determination. Our solution involves locally estimating the gradient of each
client’s loss functions, and then communicating these estimates to the server, which globally generates
a new prediction. This strategy bypasses the need for full access to all loss functions, reducing the
communication overhead while maintaining efficient expert selection.

To further enhance the privacy of the federated system, we implement an enhanced two-step privatiza-
tion process. The first step involves client-server privacy-enhanced communication. When communication
is triggered, clients send “local estimates” of the gradients of their loss functions to the server. These
local estimates include strategically added noise, adhering to DP principles. The second step is private
global prediction at the server, where the server aggregates the noisy local estimates and updates “global
prediction” for the new expert selection privately. The two-step privatization process is crucial as it
extends beyond privatizing the selection of experts; it ensures the privacy of all information exchanged
between the central server and clients within the FL framework.

A.2 Algorithm design

To address the aforementioned challenges, we propose the Fed-DP-OPE-Stoch algorithm. The Fed-
DP-OPE-Stoch algorithm works in phases. In total, it has P phases, and each phase p ∈ [P ] contains
2p−1 time indices. Fed-DP-OPE-Stoch contains a client-side subroutine (Algorithm 1) and a server-side
subroutine (Algorithm 2). The framework of our algorithm is outlined as follows.

At the initialization phase, the server selects an arbitrary point z ∈ X and broadcasts to all clients.
Subsequently, each client initializes its expert selection xi,1 = z, pays cost li,1(xi,1) and observes the loss
function.

Starting at phase p = 2, each client uses loss functions from the last phase to update its local loss
function gradient estimation, and then coordinates with the server to update its expert selection. After
that, it sticks with its decision throughout the current phase and observes the loss functions. We elaborate
this procedure as follows.

Private Local Loss Function Gradient Estimation: At the beginning of phase p, each client
privately estimates the gradient using local loss functions from the last phase Bi,p = {li,2p−2 , . . . , li,2p−1−1}.
We employ the tree mechanism for the private aggregation at each client, as in the DP-FW algorithm
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from Asi et al. (2021). Roughly speaking, DP-FW involves constructing binary trees and allocating sets
of loss functions to each vertex. The gradient at each vertex is then estimated using the loss functions of
that vertex and the gradients along the path to the root. Specifically, we run a DP-FW subroutine at
each client i, with sample set Bi,p, parameter T1 and batch size b. In DP-FW, each vertex s in the binary
tree j corresponds to a gradient estimate vi,j,s. DP-FW iteratively updates gradient estimates by visiting
the vertices of binary trees. The details of DP-FW can be found in Algorithm 3.

Intuitively, in the DP-FW subroutine, reaching a leaf vertex marks the completion of gradient
refinement for a specific tree path. At these critical points, we initiate communication between the central
server and individual clients. Specifically, as the DP-FW subroutine reaches a leaf vertex s of tree j, each
client sends the server a set of noisy inner products for each decision set vertex cn with their gradient
estimate vi,j,s. In other words, each client communicates with the server by sending {⟨cn, vi,j,s⟩+ξi,n}n∈[d],
where c1, . . . , cd represents d vertices of decision set X = ∆d, ξi,n ∼ Lap(λi,j,s), and λi,j,s =

4α2j

bε .
Private Global Expert Prediction: After receiving {⟨cn, vi,j,s⟩+ ξi,n}n∈[d] from all clients, the

central server privately predicts a new expert:

w̄j,s = argmin
cn:1≤n≤d

 1

m

m∑
i=1

(
⟨cn, vi,j,s⟩+ ξi,n

) . (1)

Subsequently, the server broadcasts the “global prediction" w̄j,s to all clients.
Local Expert Selection Updating: Denote the index of the leaf s of tree j as k. Then, upon

receiving the global expert selection w̄j,s, each client i updates its expert prediction for leaf k+1, denoted
as xi,p,k+1 ∈ X , as follows:

xi,p,k+1 = (1− ηi,p,k)xi,p,k + ηi,p,kw̄j,s, (2)

where ηi,p,k = 2
k+1 .

After updating all leaf vertices of the trees, the client obtains xi,p,K , the final state of the expert
prediction in phase p. Then, each client i sticks with expert selection xi,p,K throughout phase p and
collects loss functions li,2p−1 , . . . , li,2p−1.

The key difference between our Fed-DP-OPE-Stoch algorithm and non-federated algorithms (Asi
et al., 2022) lies in our innovative approach to centralized coordination and communication efficiency.
Unlike the direct application of DP-FW in each phase in Asi et al. (2022), our algorithm employs a more
nuanced strategy in the federated setting. Our innovative components of local loss function gradient
estimation, global expert prediction and local expert selection updating enable a significant speed-up in
the learning process. Additionally, our strategic communication protocol, where clients communicate
with the server only when DP-FW subroutine reaches leaf vertices, significantly reduces communication
costs. Moreover, the integration of DP at both local and global levels in our algorithm distinguishes it
from non-federated approaches. These features underscore our contribution to the FL setting, improving
collaborative decision-making while maintaining privacy and reducing communication overhead.

A.3 DP-FW

In Fed-DP-OPE-SToch, we run a DP-FW subroutine (Asi et al., 2021) at each client i in each phase p.
DP-FW maintains T1 binary trees indexed by 1 ≤ j ≤ T1, each with depth j, where T1 is a predetermined
parameter. An example of the tree structure is shown below. We introduce the notation s ∈ {0, 1}≤j to
denote vertices within binary tree j. ∅ signifies the tree’s root. For any s, s′ ∈ {0, 1}≤j , if s = s′0, then s

denotes the left child of s′. Conversely, when s = s′1, s is attributed as the right child of s′. For each
client i, each vertex s in the binary tree j corresponds to a parameter xi,j,s and a gradient estimate vi,j,s.
Each client iteratively updates parameters and gradient estimates by visiting the vertices of a binary
tree according to the Depth-First Search (DFS) order: as it visits a left child vertex s, the algorithm
maintains the parameter xi,j,s and the gradient estimate vi,j,s identical to those of its parent vertex s′,

8



Algorithm 1 Fed-DP-OPE-Stoch: Client i

1: Input: Phases P , trees T1, decision set X = ∆d with vertices {c1, . . . , cd}, batch size b.
2: Initialize: Set xi,1 = z ∈ X and pay cost li,1(xi,1).
3: for p = 2 to P do
4: Set Bi,p = {li,2p−2 , . . . , li,2p−1−1}
5: Set k = 1 and xi,p,1 = xi,p−1,K

6: {vi,j,s}j∈[T1],s∈{0,1}≤j = DP-FW
(
Bi,p, T1, b

)
7: for all leaf vertices s reached in DP-FW do
8: Communicate to server: {⟨cn, vi,j,s⟩+ ξi,n}n∈[d], where ξi,n ∼ Lap(λi,j,s)
9: Receive from server: w̄j,s

10: Update xi,p,k according to Equation (2)
11: Update k = k + 1
12: end for
13: Final iterate outputs xi,p,K

14: for t = 2p−1 to 2p − 1 do
15: Receive loss li,t : X → R and pay cost li,t(xi,p,K)
16: end for
17: end for

Algorithm 2 Fed-DP-OPE-Stoch: Central server

1: Input: Phases P , number of clients m, decision set X = ∆d with vertices {c1, . . . , cd}.
2: Initialize: Pick any z ∈ X and broadcast to clients.
3: for p = 2 to P do
4: Receive from clients: {⟨cn, vi,j,s⟩+ ξi,n}n∈[d]

5: Update w̄j,s according to Equation (1)
6: Communicate to clients: w̄j,s

7: end for

i.e. vi,j,s = vi,j,s′ and xi,j,s = xi,j,s′ . As it proceeds to a right child vertex, we uniformly select 2−|s|b loss
functions from set Bi,p = {li,2p−2 , . . . , li,2p−1−1} to subset Bi,j,s without replacement, where b denoting
the predetermined batch size and |s| representing the depth of the vertex s. Then the algorithm improves
the gradient estimate vi,j,s at the current vertex s of tree j using the estimate vi,j,s′ at the parent vertex
s′, i.e.

vi,j,s = vi,j,s′ +∇l(xi,j,s;Bi,j,s)−∇l(xi,j,s′ ;Bi,j,s). (3)

where ∇l(·;Bi,j,s) = 1
|Bi,j,s|

∑
l∈Bi,j,s

∇l(·), and Bi,j,s is the subset of loss functions at vertex s in the
binary tree j for client i. The full algorithm is shown in Algorithm 3.

∅

0

00 01

1

10 11

Figure 1: Binary tree with depth j = 2 in Algorithm 3.

B Federated OPE with oblivious adversaries: Realizable setting

In this section, we provide the details of Fed-SVT in the near-realizable and realizable settings.
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Algorithm 3 DP-FW at client i (Asi et al., 2021)

1: Input: Sample set B, number of trees T1, batch size b.
2: for j = 1 to T1 do
3: Set xi,j,∅ = xi,j−1,Lj−1

4: Uniformly select b samples to Bi,j,∅
5: vi,j,∅ = ∇li,t(xi,j,∅;Bi,j,∅)
6: for s ∈ DFS[j] do
7: Let s = s′a where a ∈ {0, 1}
8: if a == 0 then
9: vi,j,s = vi,j,s′ ; xi,j,s = xi,j,s′

10: else
11: Uniformly select 2−|s|b samples to Bi,j,s
12: Update vi,j,s according to Equation (3)
13: end if
14: end for
15: end for
16: Return {vi,j,s}j∈[T1],s∈{0,1}≤j

B.1 Algorithm design

We start with the intuition behind the design of our algorithm. Note that all current OPE models in the
realizable setting employ limited switching methods (Srebro et al., 2010). In the FL setting, a significant
challenge is balancing between communication efficiency and precise expert selection. Limited switching
methods, while enhancing privacy, may cause delays in adapting to adversaries’ strategies, potentially
leading to prolonged selection of sub-optimal experts and thus increased regret. To address this, we focus
on optimizing communication intervals, ensuring they are adequately frequent for timely response to
adversaries, yet sufficiently infrequent to keep communication costs low.

We develop an algorithm termed Fed-SVT, inspired by the foundational principles of the sparse-
vector-zero-loss algorithm (Asi et al., 2023) for the single-player setting. Our algorithm operates as
follows:

Periodic communication: Our approach in the federated setting contrasts with non-federated
algorithms (Asi et al., 2023) by adopting a structured communication protocol. An intuitive attempt is
to implement event-trigger communication methods for adaptive expert switching, where clients signal
the central server to switch experts. Since adaptive expert switching schedules can risk privacy leakage if
they rely on local non-private data, local privatization of switching is essential. However, unlike fixed
schedules where IID noise aggregation from clients reduces variance, event-trigger methods only track the
maximum loss among clients, not the total aggregated loss, missing out on this variance reduction benefit.

To overcome this, we adopt a fixed communication schedule in our federated setting, splitting the
time horizon T into T/N phases, each with length N . In Fed-SVT, every client selects the same expert,
i.e., xi,t = xt at each time step t. Initially, each client starts with a randomly chosen expert x1. At the
beginning of each phase n, each client sends the accumulated loss of the last phase

∑nN−1
t′=(n−1)N li,t′(x) to

the central server.
Global expert selection: The server, upon receiving

∑nN−1
t′=(n−1)N li,t′(x) from all clients, decides

whether to continue with the current expert or switch to a new one. This decision is grounded in the
sparse-vector-zero-loss algorithm (Asi et al., 2023), where the accumulated loss from all clients over a
phase is treated as a single loss instance in the sparse-vector-zero-loss algorithm. Based on the server’s
expert decision, clients update their experts accordingly. The full algorithm is provided in Algorithm 4
(client-side subroutine) and Algorithm 5 (server-side subroutine).
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Algorithm 4 Fed-SVT: Client i

1: Input: Number of Iterations T
2: Initialize: Set current expert x0 = Unif[d].
3: for t = 1 to T do
4: if t == nN for some integer n ≥ 1 then
5: Communicate to server:

∑t−1
t′=t−N li,t′(x)

6: Receive from server: xt

7: else
8: Set xt = xt−1

9: end if
10: Each client receives local loss li,t : [d]→ [0, 1] and pays cost li,t(xt)
11: end for

Algorithm 5 Fed-SVT: Central server
1: Input: Number of Iterations T , number of clients m, optimal loss L⋆, switching budget κ, sampling

parameter η > 0, threshold parameter L, failure probability ρ, privacy parameters ε
2: Initialize: Set k = 0, τ = 0 and L̂ = L+ Lap

(
4
ε

)
3: while not reaching the time horizon T do
4: if t == nN for some integer n ≥ 1 then
5: Receive from clients:

∑t−1
t′=t−N li,t′(x)

6: if k < κ then
7: Server defines a new query qt =

∑m
i=1

∑t−1
t′=τ li,t′(xt′)

8: Let γt = Lap
(
8
ε

)
9: if qt + γt ≤ L̂ then

10: Communicate to clients: xt = xt−1

11: else
12: Sample xt with scores st(x) = max

(∑m
i=1

∑t−1
t′=1 li,t′(xt′),mL⋆

)
for x ∈ [d]: P(xt = x) ∝

e−ηst(x)/2

13: Communicate to clients: xt

14: Set k = k + 1, τ = t and L̂ = L+ Lap
(
4
ε

)
15: end if
16: else
17: Server broadcasts xt = xt−1 to all the clients
18: end if
19: end if
20: end while

C Proof of lower bound for general oblivious adversaries

Theorem C.1 (Restatement of Theorem 2.4). For any federated OPE algorithm against oblivious
adversaries, the per-client regret is lower bounded by Ω(

√
T log d). Let ε ∈ (0, 1] and δ = o(1/T ), for any

(ε, δ)-DP federated OPE algorithm, the per-client regret is lower bounded by Ω

(
min

(
log d
ε , T

))
.

Proof. Consider the case when all clients receive the same loss function from the oblivious adversary at each
time step, i.e. li,t = l′t. Then we define the average policy among all clients p′t(k) =

1
m

∑m
i=1 pi,t(k),∀k ∈ [d].
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Now the regret is

E

 1

m

m∑
i=1

T∑
t=1

li,t(xi,t)

− 1

m

m∑
i=1

T∑
t=1

li,t(x
⋆) = E

 1

m

m∑
i=1

T∑
t=1

l′t(xi,t)

− T∑
t=1

l′t(x
⋆)

=
1

m

m∑
i=1

T∑
t=1

d∑
k=1

pi,t(k) · l′t(k)−
T∑

t=1

l′t(x
⋆)

=

T∑
t=1

d∑
k=1

 1

m

m∑
i=1

pi,t(k)

 · l′t(k)− T∑
t=1

l′t(x
⋆)

=

T∑
t=1

d∑
k=1

p′t(k) · l′t(k)−
T∑

t=1

l′t(x
⋆).

Note that p′t(k) is defined by p1,t(k), . . . , pm,t(k), which in turn are determined by l1,1, . . . , lm,t−1. Accord-
ing to our choice of li,t = l′t, p′t(k) is determined by l′1, l

′
2, . . . , l

′
t−1. Therefore p′1, p

′
2, . . . , p

′
t are generated

by a legitimate algorithm for online learning with expert advice problems.
There exists a sequence of losses l′1, l

′
2, . . . , l

′
t such that for any algorithm for online learning with

expert advice problem, the expected regret satisfies (Cesa-Bianchi and Lugosi (2006), Theorem 3.7)

T∑
t=1

d∑
k=1

p′t(k) · l′t(k)−
T∑

t=1

l′t(x
⋆) ≥ Ω(

√
T log d).

Therefore, we have

E

 1

m

m∑
i=1

T∑
t=1

li,t(xi,t)

− 1

m

m∑
i=1

T∑
t=1

li,t(x
⋆) ≥ Ω(

√
T log d).

From Lemma C.2, if ε ∈ (0, 1] and δ = o(1/T ), then there exists a sequence of losses l′1, l
′
2, . . . , l

′
t

such that for any (ε, δ)-DP algorithm for online learning with expert advice problem against oblivious
adversaries, the expected regret satisfies

T∑
t=1

d∑
k=1

p′t(k) · l′t(k)−
T∑

t=1

l′t(x
⋆) ≥ Ω

(
min

(
log d

ε
, T

))
.

Therefore, we have for any (ε, δ)-DP algorithm,

E

 1

m

m∑
i=1

T∑
t=1

li,t(xi,t)

− 1

m

m∑
i=1

T∑
t=1

li,t(x
⋆) ≥ Ω

(
min

(
log d

ε
, T

))
.

Lemma C.2. For any ε ∈ (0, 1], δ = o(1/T ), T, d ∈ N such that d > 1, any (ε, δ)-DP algorithm A for
DP-OPE against oblivious adversaries satisfies

T∑
t=1

lt(xt)− min
x⋆∈[d]

T∑
t=1

lt(x
⋆) ≥ Ω

(
min

(
log d

ε
, T

))
.

Proof. Let n, d ∈ N. Define y ∈ Yn containing n records, where Y = {0, 1}d. The function 1-Selectd:
Yn → [d] corresponds to selecting a coordinate b ∈ [d] in the batch model.

Then we define the regret of 1-Selectd. For a batched algorithmM with input dataset y and output
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b ∈ [d], define

Reg1-Selectd(M(y)) =
1

n

 n∑
i=1

yi(b)−minx⋆∈[d]

 n∑
i=1

yi(x
⋆)


 .

Let A be an (ε, δ)-DP algorithm
(
{0, 1}d

)T → ([d])T for DP-OPE against oblivious adversaries with
regret

∑T
t=1 lt(xt)−minx⋆∈[d]

∑T
t=1 lt(x

⋆) ≤ α. We can use A to construct an (ε, δ)-DP algorithmM for
1-Selectd in the batch model. The details of the algorithm appear in Algorithm 6.

Algorithm 6 Batch algorithm M for 1-Select (Jain et al. (2023), Algorithm 2 with k = 1)

1: Input: y = (y1, . . . , yn) ∈ Yn, where Y = {0, 1}d, and black-box access to a DP-OPE algorithm A
for oblivious adversaries.

2: Construct a stream z← y with n records.
3: for t = 1 to n do
4: Send the record zt to A and get the corresponding output xt.
5: end for
6: Output b = xn.

Let ε > 0, α ∈ R+, and T, d, n ∈ N, where T = n. If a DP-OPE algorithm A:
(
{0, 1}d

)T →
([d])T for oblivious adversaries is (ε, δ)-DP and the regret is upper bounded by α, i.e.

∑T
t=1 lt(xt) −

minx⋆∈[d]

∑T
t=1 lt(x

⋆) ≤ α, then by Lemma C.3, we have the batch algorithmM for 1-Selectd is (ε, δ)-DP
and Reg1-Selectd(M) ≤ α

n .

If δ = o(1/T ), then n = Ω
(

n log d
εα

)
(Lemma C.4). We have α = min

(
Ω
(

log d
ε

)
, n

)
= min

(
Ω
(

log d
ε

)
, T

)
.

So α ≥ Ω

(
min

(
log d
ε , T

))
. Therefore, if an algorithm for DP-OPE against oblivious adversaries is (ε, δ)-

differentially private and
∑T

t=1 lt(xt) −minx⋆∈[d]

∑T
t=1 lt(x

⋆) ≤ α holds, then α ≥ Ω

(
min

(
log d
ε , T

))
.

This means that
∑T

t=1 lt(xt)−minx⋆∈[d]

∑T
t=1 lt(x

⋆) ≥ Ω

(
min

(
log d
ε , T

))
.

Lemma C.3. Let M be the batch algorithm for 1-Selectd. For all ε > 0, δ ≥ 0, α ∈ R+, and T, d, n ∈
N, where T = n, if a DP-OPE algorithm A:

(
{0, 1}d

)T → ([d])T for oblivious adversaries is (ε, δ)-
differentially private and the regret is upper bounded by α, i.e.

∑T
t=1 lt(xt)−minx⋆∈[kd]

∑T
t=1 lt(x

⋆) ≤ α,
then batch algorithm M for 1-Selectd is (ε, δ)-differentially private and Reg1-Selectd(M) ≤ α

n .

Proof. DP guarantee: Fix neighboring datasets y and y′ that are inputs to algorithmM. According to
the algorithm design for 1-Selectd, we stream y and y′ to a DP-OPE algorithm A. Since A is (ε, δ)-DP,
and M only post-processes the outputs received from A, therefore M is (ε, δ)-DP.

Regret upper bound: Fix a dataset y. Note that if α ≥ n, the accuracy guarantee forM is vacuous.
Now assume α < n. Let γ be the regret ofM, that is,

γ = Reg1-Selectd(M)

=
1

n

 n∑
i=1

yi(b)−minx⋆∈[d]

 n∑
i=1

yi(x
⋆)


 ,

where b is the output ofM.
The main observation in the regret analysis is that if α is small, so is γ. Specifically, the regret of M

is at most α
n . Therefore, γ ≤ α

n .

Lemma C.4 (Jain et al. (2023), Lemma 4.2). For all d, n ∈ N, ε ∈ (0, 1], δ = o(1/n), γ ∈
[
0, 1

20

]
, and

(ε, δ)-DP 1-Selectd algorithms M:
(
{0, 1}d

)n → [d] with Reg1-Selectd(M) ≤ γ, we have n = Ω
(

log d
εγ

)
.

13



C.1 Proof of Theorem 2.2 (for pure DP)

Theorem C.5 (Restatement statement of Theorem 2.2). Assume that loss function li,t(·) is convex,
α-Lipschitz, β-smooth w.r.t. ∥ · ∥1. Setting λi,j,s = 4α2j

bε , µj,s = 4α2j

bmε , b = 2p−1

(p−1)2 and T1 = 1
2 log

(
bεβ

√
m

α log d

)
,

Fed-DP-OPE-Stoch (i) satisfies ε-DP and (ii) achieves the per-client regret of

O

(
(α+ β) log T

√
T log d

m
+

√
αβ
√
T log T log d

m
1
4
√
ε

)
,

with (iii) a communication cost of O
(
m

5
4 d
√

Tεβ
α log d

)
.

We define population loss as Lt(x) = E[ 1m
∑m

i=1 li,t(xi,t)]. The per-client regret can be expressed

as E
[∑T

t=1 Lt(xi,t)− min
x⋆∈X

∑T
t=1 Lt(x

⋆)

]
. We use vi,p,k, wi,p,k, xi,p,k and ηi,p,k to denote quantities

corresponding to phase p, iteration k, and client i. Also we introduce some average quantities v̄p,k =
1
m

∑m
i=1 vi,p,k and w̄p,k = 1

m

∑m
i=1 wi,p,k.

To prove the theorem, we start with Lemma C.6 that gives pure privacy guarantees.

Lemma C.6. Assume that 2T1 ≤ b. Setting λi,j,s =
4α2j

bε and µj,s =
4α2j

bmε , Fed-DP-OPE-Stoch is ε-DP.

Proof. Let S and S ′ be two neighboring datasets and assume that they differ in sample li1,t1 or l′i1,t1 ,
where 2p1−1 ≤ t1 < 2p1 . We denote V as the set encompassing ⟨cn, vi,p,k⟩+ ξi,n where ξi,n ∼ Lap(λi,j,s)

for 1 ≤ n ≤ d, 1 ≤ i ≤ m, 1 ≤ k ≤ K, and p ∈ [P ]. Also we denote W as the set containing w̄p,k for
1 ≤ k ≤ K and p ∈ [P ]. The algorithm is ε-DP if we have (x1,1,K , . . . , xm,P,K) ≈(ε,0) (x

′
1,1,K , . . . , x′

m,P,K),
V ≈(ε,0) V

′, and W ≈(ε,0) W
′.

Let Bi1,j,s be the set that contains li1,t1 or l′i1,t1 . Recall that |Bi1,j,s| = 2−|s|b. The key point is that
this set is used in the calculation of vi1,p1,k for at most 2j−|s| iterates, i.e. the leaves that are descendants
of the vertex. Let k0 and k1 be the first and last iterate such that Bi1,j,s is used for the calculation of
vi1,p1,k, hence k1 − k0 + 1 ≤ 2j−|s|. Now we summarize our proof for privacy guarantees in the following
3 steps. For a sequence ai, . . . , aj , we use the shorthand ai:j = {ai, . . . , aj}.

Step 1: x1:m,p1,k0:k1 ≈(ε,0) x
′
1:m,p1,k0:k1

and w̄p1,k0:k1 ≈(ε,0) w̄
′
p1,k0:k1

by basic composition,
post-processing and report noisy max

We will show that (x1,p1,k0
, . . . , xm,p1,k1

) and (x′
1,p1,k0

, . . . , x′
m,p1,k1

) are ε-indistinguishable. Since
Bi1,j,s is used to calculate vi1,p1,k for at most 2j−|s| iterates, i.e. k1 − k0 + 1 ≤ 2j−|s|, it is enough to
show that w̄p1,k ≈( ε

2j−|s| ,0)
w̄′

p1,k
for k0 ≤ k ≤ k1 and then apply basic composition and post-processing.

Note that for every k0 ≤ k ≤ k1, the sensitivity |⟨cn, vi1,p1,k − v′i1,p1,k
⟩| ≤ 4α

2−|s|b
, therefore for fixed

ξi,n, | 1m
∑m

i=1

(
⟨cn, vi,p1,k⟩+ ξi,n

)
− 1

m

∑m
i=1

(
⟨cn, v′i,p1,k

⟩+ ξi,n
)
| ≤ 4α

2−|s|mb
. Using privacy guarantees of

report noisy max (Dwork et al. (2014), Claim 3.9), we have w̄p1,k ≈( ε

2j−|s| ,0)
w̄′

p1,k
for k0 ≤ k ≤ k1 with

µj,s =
4α2j

bmε .
Step 2: x1:m,1:P,K ≈(ε,0) x

′
1:m,1:P,K and W ≈(ε,0) W

′ by post-processing
In order to show (x1,1,K , . . . , xm,P,K) ≈(ε,0) (x

′
1,1,K , . . . , x′

m,P,K), we only need to prove that
(x1,p1,K , . . . , xm,p1,K) ≈(ε,0) (x

′
1,p1,K

, . . . , x′
m,p1,K

) and apply post-processing. It is enough to show that
iterates (x1,p1,1, . . . , xm,p1,K) and (x′

1,p1,1, . . . , x
′
m,p1,K

) is ε-indistinguishable.
The iterates x1:m,p1,1:k0−1 and x′

1:m,p1,1:k0−1 do not depend on li1,t1 or l′i1,t1 , hence 0-indistinguishable.
Moreover, given that (x1,p1,k0

, . . . , xm,p1,k1
) and (x′

1,p1,k0
, . . . , x′

m,p1,k1
) are ε-indistinguishable, it is clear

that (x1,p1,k1+1, . . . , xm,p1,K) and (x′
1,p1,k1+1, . . . , x

′
m,p1,K

) are ε-indistinguishable by post-processing.
Similarly we have W ≈(ε,0) W

′.
Step 3: V ≈(ε,0) V

′ by Laplace mechanism
For our purpose, it suffices to establish that

(⟨cn, vi1,p1,k0
⟩, . . . , ⟨cn, vi1,p1,k1

⟩) ≈(ε,0) (⟨cn, v′i1,p1,k0
⟩, . . . , ⟨cn, v′i1,p1,k1

⟩)
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holds for 1 ≤ n ≤ d, since li1,t1 or l′i1,t1 is only used in client i1, at phase p1 and iteration k0, . . . , k1.
Therefore it is enough to show that ⟨cn, vi1,p1,k⟩ ≈( ε

2j−|s| ,0)
⟨cn, v′i1,p1,k

⟩ holds for k0 ≤ k ≤ k1 and 1 ≤

n ≤ d, because k1 − k0 + 1 ≤ 2j−|s|. Note that |⟨cn, vi1,p1,k − v′i1,p1,k
⟩| ≤ 4α

2−|s|b
. Setting λi,j,s = 4α2j

bε and
applying standard results of Laplace mechanism (Dwork et al. (2014)) lead to our intended results.

To help prove the upper bound of the regret, we introduce some lemmas first.

Lemma C.7. Let t be the time-step, p be the index of phases, i be the index of the clients, and (j, s) be a
vertex. For every index 1 ≤ k ≤ d of the vectors, we have

E
[
exp

{
c(v̄p,j,s,k −∇Lt,k(xi,p,j,s))

}]
≤ exp

(
O(1)c2(α2 + β2)

bm

)
,

where v̄p,j,s =
1
m

∑m
i=1 vi,p,j,s.

Proof. Let us fix p, t, k and i for simplicity and let Aj,s = v̄p,j,s,k −∇Lt,k(xi,p,j,s). We prove the lemma
by induction on the depth of the vertex, i.e., |s|. If |s| = 0, then vi,p,j,∅ = ∇l(xi,p,j,∅;Bi,p,j,∅) where Bi,p,j,∅
is a sample set of size b. Therefore we have

E[exp cAj,s] = E[exp c(v̄p,j,∅,k −∇Lt,k(xi,p,j,∅)]

= E

exp c
 1

mb

m∑
i=1

∑
s∈Bi,p,j,∅

∇lk(xi,p,j,∅; s)−∇Lt,k(xi,p,j,∅)




=
∏

s∈Bi,p,j,∅

∏
i∈[m]

E
[
exp

c

bm
(∇lk(xi,p,j,∅; s)−∇Lt,k(xi,p,j,∅))

]

≤ exp

(
c2α2

2bm

)
,

where the last inequality holds because for a random variable X ∈ [−α, α], we have E[exp c(X − E[X])] ≤
exp

(
c2α2

2

)
.

Assume the depth of the vertex |s| ≥ 0 and let s = s′a where a ∈ {0, 1}. If a = 0, clearly the lemma
holds. If a = 1, recall that vi,p,j,s = vi,p,j,s′ +∇l(xi,p,j,s;Bi,p,j,s)−∇l(xi,p,j,s′ ;Bi,p,j,s), then

Aj,s = v̄p,j,s,k −∇Lt,k(xi,p,j,s)

= Aj,s′ +
1

m

m∑
i=1

∇lk(xi,p,j,s;Bi,p,j,s)−
1

m

m∑
i=1

∇lk(xi,p,j,s′ ;Bi,p,j,s)

−∇Lt,k(xi,p,j,s) +∇Lt,k(xi,p,j,s′)

Let Bi,p,<(j,s) = ∪(j1,s1)<(j,s)Bi,p,j1,s1 be the set containing all the samples used up to vertex (j, s) in
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phase p at client i. We have

E
[
exp cAj,s

]
= E

[
exp

(
c(Aj,s′ +

1

m

m∑
i=1

∇lk(xi,p,j,s;Bi,p,j,s)−
1

m

m∑
i=1

∇lk(xi,p,j,s′ ;Bi,p,j,s)
)

× exp

(
−∇Lt,k(xi,p,j,s) +∇Lt,k(xi,p,j,s′)

)]
= E

[
E
[
exp

(
c(Aj,s′ +

1

m

m∑
i=1

∇lk(xi,p,j,s;Bi,p,j,s)−
1

m

m∑
i=1

∇lk(xi,p,j,s′ ;Bi,p,j,s)

−∇Lt,k(xi,p,j,s) +∇Lt,k(xi,p,j,s′)

)∣∣∣∣Bi,p,<(j,s)

]]
= E

[
E
[
exp

(
cAj,s′

) ∣∣Bi,p,<(j,s)

]
× E[exp

(
c(

1

m

m∑
i=1

∇lk(xi,p,j,s;Bi,p,j,s)−
1

m

m∑
i=1

∇lk(xi,p,j,s′ ;Bi,p,j,s)

−∇Lt,k(xi,p,j,s) +∇Lt,k(xi,p,j,s′)

)∣∣∣∣Bi,p,<(j,s)

]]
.

Since li,t(·; s) is β-smooth w.r.t. ∥ · ∥1, we have

|∇lk(xi,p,j,s;Bi,p,j,s)−∇lk(xi,p,j,s′ ;Bi,p,j,s)| ≤ β∥xi,p,j,s − xi,p,j,s′∥1.

Since vertex (j, s) is the right son of vertex (j, s′), the number of updates between xi,p,j,s and xi,p,j,s′ is
at most the number of leafs visited between these two vertices i.e. 2j−|s|. Therefore we have

∥xi,p,j,s − xi,p,j,s′∥1 ≤ ηi,p,j,s′2
j−|s| ≤ 22−|s|.

By using similar arguments to the case |s| = 0, we can get

E
[
exp

(
c(

1

m

m∑
i=1

∇lk(xi,p,j,s;Bi,p,j,s)−
1

m

m∑
i=1

∇lk(xi,p,j,s′ ;Bi,p,j,s)
)

× exp

(
−∇Lt,k(xi,p,j,s) +∇Lt,k(xi,p,j,s′)

)∣∣∣∣Bi,p,<(j,s)

]
≤ exp

(
O(1)c2β22−2|s|

m|Bi,p,j,s|

)

≤ exp

(
O(1)c2β22−|s|

bm

)
.

Then we get

E[exp cAj,s] ≤ E[exp cAj,s′ ] exp

(
O(1)c2β22−|s|

bm

)
.

Apply this inductively, we have for every index 1 ≤ k ≤ d

E[exp cAj,s] ≤ exp

(
O(1)c2(α2 + β2)

bm

)
.

Lemma C.8 upper bounds the variance of the average gradient.

16



Lemma C.8. At phase p, for each vertex (j, s) and 2p−1 ≤ t < 2p − 1, we have

E
[
∥v̄p,j,s −∇Lt(xi,p,j,s)∥∞

]
≤ (α+ β)O

(√
log d

bm

)
,

where v̄p,j,s =
1
m

∑m
i=1 vi,p,j,s.

Proof. Lemma C.7 implies that v̄p,j,s,k−∇Lt,k(xi,p,j,s) is O(α
2+β2

bm )-sub-Gaussian for every index 1 ≤ k ≤ d

of the vectors. Applying standard results of the maximum of d sub-Gaussian random variables, we get

E[∥v̄p,j,s −∇Lt(xi,p,j,s)∥∞] ≤ O

(√
α2 + β2

bm

)√
log d.

Lemma C.9 gives the tail bound of the sum of i.i.d. random variables following Laplace distribution.

Lemma C.9. Let ξi,n be IID random variables following the distribution Lap(λi,j,s). Then we have

E

 max
n:1≤n≤d

∣∣∣ m∑
i=1

ξi,n

∣∣∣
 ≤ O(

√
mλi,j,s ln d).

Proof. ξi,n’s are md IID random variables following the distribution Lap(λi,j,s). We note that

E
[
exp(uξi,n)

]
=

1

1− λi,j,s
2u2

, |u| ≤ 1

λi,j,s
.

Since 1
1−λi,j,s

2u2 ≤ 1+2λi,j,s
2u2 ≤ exp(2λi,j,s

2u2), when |u| ≤ 1
2λi,j,s

, ξi,n is sub-exponential with param-
eter (4λi,j,s

2, 2λi,j,s). Applying standard results of linear combination of sub-exponential random variables,
we can conclude that

∑m
i=1 ξi,n, denoted as Yn, is sub-exponential with parameter (4mλi,j,s

2, 2λi,j,s).
From standard results of tail bounds of sub-exponential random variables, we have

P
(
|Yn| ≥ c

)
≤ 2 exp

(
− c2

8mλi,j,s
2

)
, if 0 ≤ c ≤ 2mλi,j,s,

P(|Yn| ≥ c) ≤ 2 exp

(
− c

4λi,j,s

)
, if c ≥ 2mλi,j,s.

Since P
(

max
n:1≤n≤d

|Yn| ≥ c

)
≤
∑

n:1≤n≤d P
(
|Yn| ≥ c

)
, we have

P( max
n:1≤n≤d

|Yn| ≥ c) ≤ 2d exp

(
− c2

8mλi,j,s
2

)
, if 0 ≤ c ≤ 2mλi,j,s,

P( max
n:1≤n≤d

|Yn| ≥ c) ≤ 2d exp

(
− c

4λi,j,s

)
, if c ≥ 2mλi,j,s.

Then we have
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E
[

max
n:1≤n≤d

|Yn|
]
=

∫ ∞

0

P
(

max
n:1≤n≤d

|Yn| ≥ c

)
dc

=
√
8m ln dλi,j,s +

∫ 2mλi,j,s

√
8m ln dλi,j,s

P
(

max
n:1≤n≤d

|Yn| ≥ c

)
dc

+

∫ ∞

2mλi,j,s

P
(

max
n:1≤n≤d

|Yn| ≥ c

)
dc

≤
√
8m ln dλi,j,s +

∫ 2mλi,j,s

√
8m ln dλi,j,s

2 exp

(
ln d− c2

8mλi,j,s
2

)
dc

+

∫ ∞

2mλi,j,s

2 exp

(
ln d− c

4λi,j,s

)
dc

≤
√
8m ln dλi,j,s +

√
8mλi,j,s

∫ +∞

−∞
exp

(
−u2

)
du

+ 8λi,j,s

∫ ∞

2/m−ln d

exp(−u)du

≤
√
8m ln dλi,j,s +

√
8mλi,j,s

∫ +∞

−∞
exp

(
−u2

)
du

+ 8λi,j,s ln d+ 8λi,j,s

∫ ∞

0

exp(−u)du

=
√
8m ln dλi,j,s +

√
8mπλi,j,s + 8λi,j,s ln d+ 8λi,j,s

= O(
√
mλi,j,s ln d).

Lemma C.10. Setting λi,j,s =
4α2j

bε , we have

E[⟨v̄p,k, w̄p,k⟩] ≤ E
[
min
w∈X
⟨v̄p,k, w⟩

]
+O

(
α2j ln d

bε
√
m

)
.

Proof. Since w̄p,k = argmincn:1≤n≤d

[
1
m

∑m
i=1

(
⟨cn, vi,p,k⟩+ ξi,n

)]
, where ξi,n ∼ Lap(λi,j,s). We denote

w̄p,k as cn⋆ and we have

⟨w̄p,k, v̄p,k⟩ = ⟨cn⋆ , v̄p,k⟩

= min
n:1≤n≤d

⟨cn, v̄p,k⟩+ 1

m

m∑
i=1

ξi,n

− 1

m

m∑
i=1

ξi,n⋆

≤ min
n:1≤n≤d

⟨cn, v̄p,k⟩+
1

m
max

n:1≤n≤d

m∑
i=1

ξi,n −
1

m
min

n:1≤n≤d

m∑
i=1

ξi,n

≤ min
n:1≤n≤d

⟨cn, v̄p,k⟩+
2

m
max

n:1≤n≤d

∣∣∣ m∑
i=1

ξi,n

∣∣∣.
Applying Lemma C.9, we get

E[⟨v̄p,k, w̄p,k⟩] ≤ E
[
min
w∈X
⟨v̄p,k, w⟩

]
+O

(
λi,j,s ln d√

m

)
.
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With the lemmas above, we are ready to prove Theorem 2.2.

Proof. Lemma C.6 implies the claim about privacy. We proceed to prove the regret upper bound.

Lt(xi,p,k+1)
(a)

≤ Lt(xi,p,k) + ⟨∇Lt(xi,p,k), xi,p,k+1 − xi,p,k⟩+ β
∥xi,p,k+1 − xi,p,k∥21

2
(b)

≤ Lt(xi,p,k) + ηi,p,k⟨∇Lt(xi,p,k), w̄p,k − xi,p,k⟩+
1

2
βηi,p,k

2

= Lt(xi,p,k) + ηi,p,k⟨∇Lt(xi,p,k), x
⋆ − xi,p,k⟩+ ηi,p,k⟨∇Lt(xi,p,k)− v̄p,k, w̄p,k − x⋆⟩

+ ηi,p,k⟨v̄p,k, w̄p,k − x⋆⟩+ 1

2
βηi,p,k

2

(c)

≤ Lt(xi,p,k) + ηi,p,k[Lt(x
⋆)− Lt(xi,p,k)] + ηi,p,k∥∇Lt(xi,p,k)− v̄p,k∥∞ + ηi,p,k(⟨v̄p,k, w̄p,k⟩

− min
w∈X
⟨v̄p,k, w⟩) +

1

2
βηi,p,k

2,

where (a) is due to β-smoothness, (b) is because of the updating rule of xi,p,k, and (c) follows from the
convexity of the loss function and Hölder’s inequality.

Subtracting Lt(x
⋆) from each side and taking expectations, we have

E[Lt(xi,p,k+1)− Lt(x
⋆)] ≤ (1− ηi,p,k)E[Lt(xi,p,k)− Lt(x

⋆)] + ηi,p,kE[∥∇Lt(xi,p,k)− v̄p,k∥∞]

+ ηi,p,kE[⟨v̄p,k, w̄p,k⟩ − min
w∈X
⟨v̄p,k, w⟩] +

1

2
βηi,p,k

2.

Applying Lemma C.10 and Lemma C.8, we have

E[Lt(xi,p,k+1)− Lt(x
⋆)] ≤ (1− ηi,p,k)E[Lt(xi,p,k)− Lt(x

⋆)] + ηi,p,k(α+ β)O

(√
log d

bm

)

+
ηi,p,kα2

j

bε
O

(
ln d√
m

)
+

1

2
βηi,p,k

2.

Let αk = ηi,p,k(α+ β)O

(√
log d
bm

)
+

ηi,p,kα2
j

bε O
(

ln d√
m

)
+ 1

2βηi,p,k
2. We simplify the notion of ηi,p,k to

ηk. Then we have

E[Lt(xi,p,k)− Lt(x
⋆)] ≤

K∑
k′=1

αk

K−1∏
i>k

(1− ηk′)

=

K∑
k=1

αk
(k + 1)k

K(K − 1)

≤
K∑

k=1

αk
(k + 1)2

(K − 1)2
,

where ηk = 2
k+1 .

Since K = 2T1 , simply algebra implies that

E[Lt(xi,p,K)− Lt(x
⋆)] ≤ O

(
(α+ β)

√
log d

bm
+

α2T1 ln d

bε
√
m

+
β

2T1

)
. (4)

At iteration 2p−1 ≤ t < 2p, setting b = 2p−1

(p−1)2 and T1 = 1
2 log

(
bεβ

√
m

α log d

)
in Equation (4), we have

E[Lt(xi,p,K)− Lt(x
⋆)] ≤ O

(
(α+ β)p

√
log d

2pm
+

p
√
αβ log d

m
1
4

√
2pε

)
.
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Therefore, the total regret from time step 2p to 2p+1 − 1 is at most

E

2p+1−1∑
t=2p

Lt(xi,t)−min
u∈X

2p+1−1∑
t=2p

Lt(u)

 ≤ O

(
(α+ β)p

√
2p log d

m
+

p
√
αβ log d

√
2p

m
1
4
√
ε

)
.

Summing over p, we can get

E

 T∑
t=1

Lt(xi,t)−min
u∈X

T∑
t=1

Lt(u)

 ≤ log T∑
p=1

O

(
(α+ β)p

√
2p log d

m
+

p
√
αβ log d

√
2p

m
1
4
√
ε

)

≤ O

(
(α+ β)

log T∑
p=1

n

√
2p log d

m
+

√
αβ log d

m
1
4
√
ε

log T∑
p=1

n
√
2p

)

≤ O

(
(α+ β) log T

√
T log d

m
+

√
αβ log d

√
T log T

m
1
4
√
ε

)
.

Now we turn our focus to communication cost. Since there are log T phases, and within each phase,
there are 2T1 leaf vertices where communication is initiated, the communication frequency scales in
O(
∑

p 2
T1). Therefore, the communication cost scales in O(m5/4d

√
Tεβ/(α log d) log T ).

D Proof of Theorem 2.6

Theorem D.1 (Restatement of Theorem 2.6). Let li,t ∈ [0, 1]d be chosen by an oblivious adversary under
near-realizability assumption. Set 0 < ρ < 1/2, κ = O(log(d/ρ)), L = mL⋆ + 8 log(2T 2/(N2ρ))

ε + 4/η, and
η = ε/2κ. Then the algorithm is ε-DP, the communication cost scales in O

(
mdT/N

)
, and with probability

at least 1−O(ρ), the pre-client regret is upper bounded by O

(
log2(d)+log

(
T2

N2ρ

)
log

(
d
ρ

)
mε + (N + L⋆) log

(
d
ρ

))
.

Moreover, setting η = ε/
√
κ log(1/δ), we have the algorithm is (ε, δ)-DP, the communication cost

scales in O
(
mdT/N

)
, and with probability at least 1 − O(ρ), the pre-client regret is upper bounded by

O

(
log

3
2 (d)
√

log( 1
δ )+log

(
T2

N2ρ

)
log

(
d
ρ

)
mε + (N + L⋆) log

(
d
ρ

))
.

Proof. DP guarantee: There are κ applications of exponential mechanism with privacy parameter η.
Moreover, sparse vector technique is applied over each sample once, hence the κ applications of sparse-
vector are ε/2-DP. Overall, the algorithm is (ε/2+ κη)-DP and (ε/2+

√
2κ log(1/δ)η+ κη(eη − 1), δ)-DP

(Advanced composition). Setting η = ε/2κ results in ε-DP and η = ε/
√
κ log(1/δ) results in (ε, δ)-DP.

Communication cost: The number of communication between the central server and clients scales
in O(mT/N). Moreover, within each communication, the number of scalars exchanged scales in O(d).
Therefore the communication cost is O(mdT/N).

Regret upper bound: We define a potential at phase n ∈ [T/N ] :

ϕn =
∑
x∈[d]

e−ηLn(x)/2

where Ln(x) = max
(∑m

i=1

∑nN−1
t′=1 li,t′(x),mL⋆

)
. Note that ϕ0 = de−ηmL⋆/2 and ϕn ≥ e−ηmL⋆/2 for all

n ∈ [T/N ] since there is x ∈ [d] such that
∑m

i=1

∑T
t=1 li,t(x) ≤ mL⋆. We split the iterates to s = ⌈log d⌉

rounds n0N,n1N, . . . , nsN where np is the largest n ∈ [T/N ] such that ϕnp ≥ ϕ0/2
p. Let Zp be the

number of switches in
[
npN, (np+1 − 1)N

]
(number of times the exponential mechanism is used to pick

xt). Let Z =
∑s−1

p=0 Zp be the total number of switches. Note that Z ≤ 3s +
∑s−1

p=0 max
(
Zp − 3, 0

)
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and Lemma D.2 implies max
(
Zp − 3, 0

)
is upper bounded by a geometric random variable with success

probability 1/3. Therefore, using concentration of geometric random variables (Lemma D.3), we get that

P (Z ≥ 3s+ 24 log(1/ρ)) ≤ ρ.

Since K ≥ 3s + 24 log(1/ρ), the algorithm does not reach the switching budget with probability
1 − O(ρ). So the total number of switching scales as O(log(d/ρ)). Now we analyze the regret. Define
T1N, . . . TCN as the switching time steps with TCN = T , where C = O(log(d/ρ)). Theorem 3.24 in
Dwork et al. (2014) implies that with probability at least 1− ρ,

T∑
t=1

m∑
i=1

li,t(xi,t) =

C∑
c=1

TcN∑
t=Tc−1N+1

m∑
i=1

li,t(xi,t)

=

C∑
c=1

 TcN−N∑
t=Tc−1N+1

m∑
i=1

li,t(xi,t) +

TcN∑
t=TcN−N+1

m∑
i=1

li,Tn
(xt)


≤

C∑
c=1

(
L+

8 log(2T 2/(N2ρ))

ϵ
+mN

)

=

C∑
c=1

(
mL⋆ +

16 log(2T 2/(N2ρ))

ϵ
+ 4/η +mN

)

= O

(
mL⋆ log(d/ρ) +

log(T 2/(N2ρ)) log(d/ρ)

ε
+

4 log(d/ρ)

η
+mN log(d/ρ)

)
. (5)

Case 1: Setting η = ε/2κ in Equation (5), we have

m∑
i=1

T∑
t=1

li,t(xi,t) ≤ O

(
mL⋆ log d+

log2 d+ log(T 2/(N2ρ)) log(d/ρ)

ε
+mN log(d/ρ)

)
.

Case 2: Setting η = ε/
√

κ log(1/δ) in Equation (5), we have

m∑
i=1

T∑
t=1

li,t(xi,t) ≤ O

(
mL⋆ log d+

log3/2 d
√

log(1/δ) + log(T 2/(N2ρ)) log(d/ρ)

ε
+mN log(d/ρ)

)
.

Lemma D.2. Fix 0 ≤ p ≤ s− 1. Then for any 1 ≤ k ≤ T/N , it holds that

P
(
Zp = k + 3

)
≤ (2/3)k+2 < (2/3)k−1(1/3).

Proof. Let npN ≤ nN ≤ np+1N be a time-step when a switch happens (exponential mechanism
is used to pick xt). Note that ϕnp+1

≥ ϕn/2. We prove that the probability that xt is switched
between nN and np+1N is at most 2/3. To this end, note that if xt is switched before np+1N then∑m

i=1

∑np+1N−1
t′=nN li,t′(xt′) ≥ L− 8 log(2T 2/(N2ρ))

ε , therefore Lnp+1
(x)− Ln(x) ≥ L− 8 log(2T 2/(N2ρ))

ε ≥ 4/η.
Thus we have that

P
(
xt is switched before np+1N

)
≤
∑
x∈[d]

P (xt = x) 1
{
Lnp+1(x)− Ln(x) ≥ 4/η

}
=
∑
x∈[d]

e−ηLn(x)/2

ϕn
· 1
{
Lnp+1

(x)− Ln(x) ≥ 4/η
}
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≤
∑
x∈[d]

e−ηLn(x)/2

ϕn
· 1− e

−η
(
Lnp+1

(x)−Ln(x)
)
/2

1− e−2

≤ 4/3
(
1− ϕnp+1/ϕn

)
≤ 2/3.

where the second inequality follows the fact that 1{a ≥ b} ≤ 1−e−ηa

1−e−ηb for a, b, η ≥ 0, and the last inequality
since ϕnp+1

/ϕn ≥ 1/2. This argument shows that after the first switch inside the range
[
npN,np+1N − 1

]
,

each additional switch happens with probability at most 2/3. So we have

P
(
Zp = k + 3

)
≤ (2/3)k+2 < (2/3)k−1(1/3).

Lemma D.3 (Asi et al. (2023), Lemma A.2). Let W1, . . . ,Wn be i.i.d. geometric random variables with
success probability p. Let W =

∑n
i=1 Wi. Then for any k ≥ n

P(W > 2k/p) ≤ exp(−k/4).
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