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1 Introduction

Differentially private (DP) mean estimation is arguably the most comprehensively studied problems in the
DP literature, leading to various efficient estimators that achieve optimal results across diverse applica-
tions [Dwork et al., 2006, Kamath et al., 2019, Acharya et al., 2021, Hopkins et al., 2022]. However, given
the inherent simplicity of the mean estimation, it becomes nearly impossible to tailor these well-designed
algorithms to tasks involving more complex data structures, such as DP machine learning.

Conversely, the application of private deep learning has emerged as a key driver of the recent successes in
real-world DP deployment. While training models from scratch [Abadi et al., 2016] has been reported to
incur significant performance degradation, the adoption of DP-SGD with fine-tuning has rapidly gained
traction [Yu et al., 2021, Li et al., 2021]. Notably, private fine-tuning of only the last layer (also known as
linear probing) of a pre-trained ResNet model has demonstrated an accuracy of 80.0% on CIFAR-10 under
(ε = 2, δ = 10−5)-DP, as compared to 84.0% without any privacy constraint.

Various theories attempt to explain this phenomenon. For instance, Ganesh et al. [2023] hypothesizes that the
model reaches a good “basin” in the loss landscape after pre-training. Motivated by both theoretical insights
and promising empirical findings, we are intrigued by the prospect that a basic technique like mean estimation
could leverage the potentially enhanced model and data structure, thus achieving satisfactory model accuracy
in private classification.

Baselines: There are mainly two fine-tuning schemes for classification:

1. DP linear probing: fine-tuning the last layer while keeping the model weights of the other layers
frozen, or equivalently, applying DP logistic regression on the last-layer embeddings.

2. Full fine-tuning: fine-tuning all layers of the pre-trained model.

Empirical findings [Ke et al., 2024] suggest that linear probing typically performs well in low privacy regimes
while full fine-tuning excels in high privacy regimes.

Our contributions can be summarized as follows:

1. In low privacy regimes, DP mean estimation demonstrates remarkable empirical performance, offering
a feasible alternative to linear probing. The implementation is quite straightforward, without the
complexities associated with iterative processes and hyperparameter tuning. Our findings may also
inspire future researches into the loss landscape of fine-tuning.

2. In high privacy regimes, we propose a warm-up phase for full fine-tuning via mean estimation, which
accelerates the convergence of DP-SGD. We anticipate this approach will be advantageous in scenarios
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where training resources are constrained.

2 DP Mean Estimation for Classification

2.1 Direct Utilization for Model Inference

Intuitively, if the model has been pre-trained on a similar public dataset, the last-layer feature embeddings of
private data might naturally form distinct clusters corresponding to each label class.1

Shed by this insight, our proposed training algorithm is outlined in Algorithm 1: we initially encode all
private data using the last-layer feature extractor ϕ(·) from the pre-trained model. We impose feature clipping
within ϕ(·), constraining ||ϕ(x)||2 = 1 for all x ∈ X . Subsequently, Let K denote the number of label
classes. We privately estimate the feature mean (q1, ..., qK) ∈ Rd×K for each class, utilizing the feature sum
and the count perturbed by the Gaussian mechanism.

Algorithm 1 DP mean estimation for classification (training)

1: Input: Dataset S ∈ (X × Y)n, noise scale σ and the last-layer feature embedding ϕ(·) : X → Rd.
2: for j = 1, ...,K do

3: Release the feature sum per class: Sj =

(∑n
i=1 I[yi = j]ϕ(xi)

)
+N (0, σ21d)

4: Release the number of private data per class: nj =

(∑n
i=1 I[yi = j]

)
+N (0, σ2)

5: Release the class center qj = Sj/nj

6: end for
7: Return feature means for each class q = (q1, ..., qK)

During the inference, we apply the same feature extractor ϕ(·) to the testing data and classify it based on the
proximity to the nearest class center.

Theorem 2.1. Algorithm 1 is (ε, δ)-DP if and only if

Φ

(
1

2σ
− σε

2

)
− eεΦ

(
− 1

2σ
− σε

2

)
≤ δ

2
,

where Φ(·) is the Gaussian CDF.

The proof directly follows from the analaysis of the Gaussian Mechanism [Balle and Wang, 2018].

Remark 2.2. We present a comparison between our algorithm and linear probing, where the latter can be
viewed as a private logistic regression on the last-layer embeddings. While both algorithms theoretically
incur the same order of additional loss due to DP [Bassily et al., 2019], we conjecture (also demonstrated
by our experiments) that DP mean estimation achieves a superior constant factor. Consequently, as ε tends
towards zero, our method provides an enhanced utility.

Remark 2.3. Our algorithm is quite simple in terms of implementation, getting rid of the complexities
associated with iterative processes and hyperparameter tuning, which are often pain points for DP-SGD based
approaches.

1This observation aligns with the recent neural collapse theory. Neural collapse [Papyan et al., 2020] is a phenomenon wherein,
during training a deep learning model (without privacy consideration) until convergence, the last-layer features tend to converge to a
K-simplex equiangular tight frame.
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2.2 DP-SGD Warm-up via Mean Estimation

In this section, we propose utilizing Algorithm 1 to warm up DP-SGD (described in Algorithm 2), with the
objective of enhancing both accuracy and computational efficiency.

While fine-tuning all layers in DP-SGD typically yields a state-of-the-art performance under a large ε,
DP-SGD suffers from a slow convergence rate, thereby compromising the model’s privacy-utility trade-offs,
as well as training efficiency. In light of this, our approach aims to initially warm up the pre-trained model
via private mean estimation, followed by training a DP-SGD algorithm that focuses solely on learning the
residual between ground-truth labels and the pseudo-labels predicted by DP mean estimation.

Algorithm 2 DP-SGD warm-up via mean estimation (training)

1: Input: Dataset S ∈ (X × Y)n, the privacy budget (ε, δ), the pre-trained model θ0 and the last-layer
feature embedding ϕ(·) : X → Rd.

2: Release private class centers (q1, ..., qK) = Algorithm 1 (ε1, δ1).

3: Encode each private data x: h(x) =
(
cos(ϕ(x), q1), ..., cos(ϕ(x), qK)

)
4: DP-SGD full training on private set S using the loss function in Definition 2.4 under (ε2, δ2)-DP.

As outlined in Algorithm 2, we initially allocate a privacy budget of (ε1, δ1) to reveal the private class centers
q. As a next step, we encode each private individual x using the cosine distance to each center, denoted as
h(x) ∈ RK . After softmax, the soft label serves as a prior for the subsequent algorithm. Finally, we employ
a DP-SGD algorithm on the private dataset leveraging the residual loss introduced below.

Definition 2.4 (Residual loss). Let g(x) ∈ RK denote the logit value (model output before the soft-max
layer) for the model θ. Define a probability simplex softmax(h) ∈ RK of x via the private mean estimation.
The residual loss is computed as

Lθ = ℓKL

(
softmax

(
g(x)

)
+ softmax

(
h(x)

)
; y

)
where ℓKL denote the Kullback-Leibler loss.

In contrast to the conventional cross-entropy loss Lθ = ℓKL

(
softmax

(
g(x)

)
; y
)

employed in DP-SGD, the
model θ in Algorithm 2 exclusively learns the difference between the prior softmax(h(x)) and the true label
y.

For inference, we classify each x as argmaxj∈[K]

(
softmax(g(x)) + softmax(h(x))

)
[j]

.

Naturally from the composition theorem,

Theorem 2.5. Algorithm 2 satisfies (ε1 + ε2, δ1 + δ2)-DP.

3 Experiments

In this section, we conduct an empirical comparison between our methods and other private fine-tuning
algorithms, aiming to assess both efficiency and privacy-utility trade-offs.

3.1 Low ε regimes

We compare the privacy-utility trade-offs between our Algorithm 1 and linear probing (known for its superior
performance compared to full fine-tuning) when ε is small.
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We consider two pre-trained models (vision transformer ViT [Dosovitskiy et al., 2020] and the language
transformer RoBERTa [Reimers and Gurevych, 2019]. Our evaluation considers two image classification
tasks, CIFAR-10 and CIFAR-100, as well as two language classification tasks, AG News [Zhang et al., 2015]
and SST2 [Socher et al., 2013].

Table 1: Privacy-utility trade-off for Algorithm 1 and DP linear probing.

Model Dataset Method ε = 0.1 ε = 0.5 ε = 2.0 No Privacy

ViT
CIFAR-10

Linear probing 88.4% 95.5% 96.3% 96.6%
Our algorithm 95.0% 95.6% 95.6% 95.8%

CIFAR-100
Linear probing 52.0% 79.1% 82.1% 86.0%
Our algorithm 58.0% 79.5% 81.7% 82.4%

RoBERTa
SST2

Linear probing 86.6% 88.9% 91.3% 91.4%
Our algorithm 88.7% 89.1% 89.2% 89.2%

AG News
Linear probing 88.1% 88.7% 89.3% 91.2%
Our algorithm 87.5% 87.8% 88.0% 88.3%

When ε ≤ 0.5, our algorithm outperforms DP linear probing under some situations. Even when ε =
2, our algorithm functions as a viable alternative, offering simplified implementation compared to its
counterpart.

3.2 High ε regimes

In the following experiment, we investigate the impact of accelerating the convergence of DP-SGD by
the private mean estimation. Specifically, we keep the number of epochs fixed and ensure the overall
privacy budget remains constant at (ε = 2.0, δ = 1

50000)-DP for different values of epoch. That being
said, our algorithm demonstrates superior performance compared to DP-SGD, when training resources are
constrained.

Table 2: CIFAR-100 Privacy-utility trade-offs at a fixed epoch. We fix epoch in {2, 10, 40} and ensure the
overall privacy budget is fixed to (ε = 2.0, δ = 1

50000)-DP for all the methods (pre-trained model: ViT).

Method Epoch=2 Epoch=10 Epoch=40 ε = ∞
DP linear probing 79.6% 82.4% 83.6% 86.0%

DP-SGD 79.3% 84.7% 85.6% 88.9%
Algorithm 2 (ours) 81.3% 84.8% 86.1% 89.3%

Table 3: CIFAR-10 Privacy-utility trade-offs at a fixed epoch.

Method Epoch=2 Epoch=20
DP-SGD 94.7% 97.0%

Algorithm 2 (ours) 95.2% 97.0%
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