Reconstruction Attacks on Machine Unlearning: Simple Models are Vulnerable

Martin Bertran“' Shuai Tang“! Michael Kearns'? Jamie Morgenstern '3 Aaron Roth'?
Zhiwei Steven Wu ' 4

Abstract

Machine unlearning is motivated by principles
of data autonomy. The premise is that a person
can request to have their data’s influence removed
from deployed models, and those models should
be updated as if they were retrained without the
person’s data. We show that these updates ex-
pose individuals to high-accuracy reconstruction
attacks which allow the attacker to recover their
data in its entirety, even when the original models
are so simple that privacy risk might not otherwise
have been a concern. We show how to mount a
near-perfect attack on the deleted data point from
linear regression models. We then generalize our
attack to other loss functions and architectures,
and empirically demonstrate the effectiveness of
our attacks across a wide range of datasets (cap-
turing both tabular and image data). Our work
highlights that privacy risk is significant even for
extremely simple model classes when individuals
can request deletion of their data from the model.

1. Introduction

As model training on personal data becomes commonplace,
there has been a growing literature on data protection in
machine learning (ML), which includes at least two thrusts:

Data Privacy Preserving the privacy of individual training
examples is essential for ensuring privacy protection in ML
applications. Privacy attacks that reveal privacy risks in
trained models range from membership inference attacks
(Shokri et al., 2017) at one extreme, which aim only to
determine if a particular person’s data was used in training,
to reconstruction attacks (Dick et al., 2023) at the other
extreme, which aim to recover the entire data records of
many people. Differential privacy (Dwork et al., 2006) has
emerged as the primary approach to ensure formal privacy,

“Equal contribution ' Amazon AWS AI/ML 2University of Penn-
sylvania *University of Washington *Carnegie Mellon University.
Correspondence to: Martin Bertran <maberlop@amazon.com>,
Shuai Tang <shuat@amazon.com>.

Copyright 2024 by the author(s).

which provably defends against membership inference.

Machine Unlearning Individuals should have the flexibil-
ity to decide how their data is used even retroactively —
including its influence on trained models. This has led to
the field called data deletion or machine unlearning (Ginart
etal., 2019; Cao & Yang, 2015). The idea is that, after an
individual’s data is deleted, the resulting model should be
in the state it would have been had the model originally
been trained without the individual in question’s data. The
primary focus of this literature has been on achieving or
approximating this condition for complex models in ways
that are more computationally efficient than full retraining
((Golatkar et al., 2020; Izzo et al., 2021; Gao et al., 2022;
Neel et al., 2021; Bourtoule et al., 2021; Gupta et al., 2021).)

Practical work on both privacy attacks (like membership
inference and reconstruction attacks) and machine unlearn-
ing has generally focused on large, complex models like
deep neural networks. This is because (1) these models are
the ones that are (perceived as) most susceptible to privacy
attacks, since they have the greatest capacity to memorize
data, and (2) they provide the most technically challenging
case for machine unlearning (since for simple models, the
baseline of just retraining the model is feasible). For simple
(e.g., linear) models, the common wisdom has been that
the risk of privacy attacks is low, and indeed, we verify in
Appendix C that state-of-the-art membership inference at-
tacks fail to achieve non-trivial performance when attacking
linear models trained on tabular data. The main message
of our paper is that the situation changes starkly when we
consider privacy risks in the presence of machine unlearning.
As we show, absent additional protections like differential
privacy, requesting that your data be removed—even from
a linear regression model—can expose you to a complete
reconstruction attack. Informally, this is because it gives the
adversary two models that differ in whether your data was
used in training, which allows them to attempt a differencing
attack. Additional related work are in B.

Our Contributions We consider the following threat model:
An attacker has access to the parameters of some model both
before and after a deletion request is made. The attacker also
has sampling access to the data distribution, but no access to
the training set of the models. In this setting, we first study

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

exact reconstruction attacks on linear regression models. We
give an attack that accurately recovers the deleted sample
given the pair of linear models before and after sample
deletion. This is made possible by leveraging the closed-
form single-sample training algorithm for linear regression
as well as the ability to accurately estimate the covariance
matrix of the training data from a modestly sized disjoint
sample of public data drawn from the same distribution.

We then extend our attack to the setting where the model
consists of a (fixed and known) embedding function, fol-
lowed by a linear layer. Our goal remains to recover the
original data point (not just its embedding). This is a natural
class of simple models on its own, and captures last-layer
fine-tuning on top of a pre-trained model, which is common
in which machine unlearning guarantees are offered.

Finally, we give a second-order unlearning approximation
via Newton’s method which extends our attack to generic
loss functions and model architectures. This provides a
way to approximate the gradient of a deleted sample with
respect to the model parameters, and later the sample itself.
We remark that Newton’s update approximation has itself
been proposed as a way to approximate unlearning (Izzo
et al., 2021; Gao et al., 2022), and is naturally related to
the literature on influence functions (Hampel, 1974; Koh &
Liang, 2017; Zhang & Zhang, 2022), which examines the
effect any (set of) samples has on the final trained model.

We experimentally demonstrate the effectiveness of our at-
tack on a variety of simple tabular and image classification
and regression tasks. The success of our attack highlights
the privacy risks of retraining models to remove the influ-
ence of individual’s data, without additional protections like
differential privacy (as advocated by e.g. (Chourasia et al.,
2022) in another context). Figure 1 shows several deleted
samples from a model trained on CIFAR10 (Krizhevsky
et al., 2009) alongside the recovered reconstructions for our
method and a baseline based on public data. Experimental
results can be found in Appendix D.

2. Method

We first derive our attack for (regularized) linear regression
models (with unknown regularization parameter), in which
a model maintainer trains a linear regression model on the
private training set Xpiy € R™*9 g5, € R™, and then a
user corresponding to a sample (z, y) asks to be removed
from the training set. The model maintainer correspondingly
trains a second model without this user’s data (Xpyy \z €
R(=Dxd W \y € R"™1). The goal of our attack is to
reconstruct the features of this deleted user, and our attack
assumes access to the following items:

1. The linear regression model with parameters A+
trained on Xpriy, Ypriv-

Target

el dl sl ”
el o] *
P e
REE
IR E -
RNENde

Figure 1: Visualization of samples reconstructed from a
logistic regression model over a random Fourier feature
embedding (4096) of the raw input, trained on CIFAR10
data. We randomly chose one deleted sample per label
(shown in rows 1 and 4) and compared them against the
reconstructed sample using our method (HRec, rows 2 and 5)
and a perturbation baseline (MaxDiff, rows 3 and 6) which
searches for the public sample with the largest prediction
difference before and after sample deletion. HRec produces
reconstructions similar to the deleted images both visually
and quantitatively measured by cosine similarity.

Target MaxDiff HRec (ours)

HRec (ours)

MaxDiff

2. The updated linear regression model with parameters
B~ trained on X\, Ypriv \Y

3. Public samples Xpyp, Ypup drawn from the same distri-
bution as Xpiv, Ypriv

Here both models 31, and 3~ are the solution to a (regular-
ized) linear regression problem. In particular,

. A
6+ = arg mﬁm ”Xprivﬂ - ypriV”g + 5Hﬁ||§ (1)

which has a closed-form solution as follows:

BT = C7 X i Yprivs)
where C' = XpTriVXpriV + Al is the (regularized) covariance

matrix. Similarly, 8~ can be written as

B =(C—ax") (X Ypriv

P —x'y).

Note that the above formulation does not explicitly include
an intercept term. Without loss of generality, the inter-
cept can be learned by appending an additional d + 1st

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

“dummy feature” to each example x which always takes
value 24117 = 1. The intercept is now learned as an addi-
tional parameter /3441 which multiplies the dummy feature.

2.1. Determining Direction of the Deleted Sample

We can express the updated parameter 5~ in terms of
BT, C,x,y via the Sherman-Morrison formula:

y_l‘TB7 -1

S e)

By re-organizing terms, we have

T h—
+ -\ _ y—x ﬂ _
cBT—-p7)= TroTo120" a(z,y)r, (4
where a(x,y) is a scalar function that depends on both x
and y. It becomes immediate that the LHS C(8T — 57)

only differs from the deleted sample x by a scalar .

Since we do not have access to the private training data X,
or the regularization parameter)\, we use public samples
Xpub to estimate the covariance matrix C' = X;bXpub with-
out regularization. It remains to estimate the scalar «(x, y),

which depends on both the deleted sample (x, y).

2.2. Determining Scale of Deleted Sample

We introduce an intercept normalization trick to determine
the scale of the deleted sample.

Recall that we interpret the intercept as a parameter 3441
that multiplies a dummy feature x417 = 1. We will use
our knowledge that x4 = 1 to determine the scale of x.
Making this dummy feature explicit, and assuming that Cis
our estimate of the covariance matrix excluding the dummy
feature, we can write our previous analytical solution for
our attack into the following expression that now explicitly
accounts for the dummy feature:

.
fﬁ#ﬂ (B =B7) eRTE(5)

where 1 € R” is the constant 1 vector. The reconstructed
dummy feature is then

Tap1=[1TXpw 171} (BT —B7)€R (6)

Since we know that z4,; = 1, we obtain the correct scaling
factor by normalizing the reconstructed features in Eq. (5)
by the scalar in Eq. (6). Practically, our attack only com-
putes Eq. (5) once, and then normalizes features by its last
dimension. Our attack is described in Algorithm 1.

'We note that samples that already satisfy y = = ' 3~ make no
impact on the updated model and thus are not recoverable.

3. Beyond Linear Regression

Our attack is derived for linear regression, which is a com-
mon simple workhorse model class. However, the same
idea can be generalised beyond linear regression. The attack
generalises immediately to any model which performs linear
regression on top of a fixed embedding: our attack recovers
the embedding of the deleted point, and reduces the problem
to inverting the embedding. We can also generalise to other
loss functions—The primary challenge is that we no longer
have closed-form expressions for an “update”, but we can
approximate this.

3.1. Fixed Embedding Functions

Our attack is built upon the analytical update of adding
or deleting a sample to a linear regression model, there-
fore, it also generalises to linear models trained on top of
embeddings of the original features. Suppose that both
parameter vectors 37 and 3~ along with the embedding
function ¢ : RY — R are publicly known. Our attack first
reconstructs the embeddings as in Egs. (5) and (6), and then
reconstructs features by finding a data point whose embed-
ding best matches the reconstructed transformed features as
in Eq. (8).

I (O O

IS 3
Il

Z = argmin — ¢(x) (8)

x

Zd'+1

Here, we assume that the embedding ¢ is fixed—that is,
it doesn’t change after deleting a sample. This is the case
when e.g. performing last-layer fine-tuning on top of a pre-
trained model, and for data-independent embeddings like
random Fourier features.

3.2. Arbitrary Loss Functions

The analytical solution in Eq. (4) is derived in the context of
linear models trained to minimize mean squared error. When
optimizing other loss functions over other model classes,
we no longer have closed-form solutions, but we can use
Newton’s method to approximate the “update function”.
Assume the model maintainer minimizes an empirical risk
function as follows:?

1
E(ﬁ7 Xp[‘i\/7 ypriv) = EE(m,y)E{Xp,;v,yp,iv}€(5§ z, y)7 9

where /T = argming ((83; Xprv, Ypriv) and S~ =
argming £(3; Xpriv \ , Ypriv \ ¥) are the optimal model pa-
rameters before and after data deletion. We can use New-
ton’s method (i.e. a 2nd-order Taylor approximation) to

%a regularization term \Q(3) can also be incorporated in the

analysis but is here omitted for ease of presentation.

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

approximate the deletion step as

B~ BT —H VY, (10)

where H = V2_ 51 (8; Xpriv\T, Ypriv \Y),

VIl =V g+ L(B; Xpriv\T, Ypriv \Y) s -
where Vg_g+/ refers to the derivative of ¢ with respect
to B evaluated at 3 = BT. By observing that 37 =

arg ming 4(3; Xpriv, Ypriv), We can use the first-order opti-
mality conditions to get

VB:5+Z(6§XpriV7ypriv) =0 (11)
nV g g+ (B; Xpriv\Z, Ypriv \y) = —V g+ L(B; 2, y)
(12)

Intuitively, the gradient with respect to the parameter vector
evaluated at 57 on the remaining samples is equal to the
negative of that on the deleted sample. Then, we have

NVl = —Vg_g+l(B;2,y) (13)

Replacing V/ in Eq. (10) with Eq. (13), we get

-1

H
B~ BT+ - V=ptl(Biz,y), (14)

nH(B* — B7) = =Vp_g+l(Bi,y), 15)

For linear regression, this approach is exact and recovers
Eq (4). Compared to the special case of linear regression, in
this generalisation, the Hessian of the loss function plays the
role of the covariance matrix of the data in linear regression.
In practice, we use the same public data trick to estimate
the Hessian matrix H defined over the private data via m
public samples drawn from the same distribution. That is:

. 1
H = EECU'»yle{Xpubgypub}V%:ﬁJrg(ﬁ;'r/7y/)7 (16)

In general, our attack recovers the gradient of the loss at the
deleted loss sample with respect to the model parameters.
The situation simplifies when the model under attack is lin-
ear. Commonly used loss functions for classification tasks,
including the cross-entropy loss and the hinge loss, produce
gradient vectors that are proportional to data samples. For a
linear model with a differentiable loss function, we have

or 0B
Vis—p+l(B;2,y) :WW‘BZW
ol
S e 07

Thus, the gradient for the deleted sample is proportional
to the deleted sample. With the intercept normalization
trick, we can recover the correct scaling factor. For non-
differentiable loss functions, one can use smooth approxi-
mations to obtain gradients (Koh & Liang, 2017). Our goal

is to expose the privacy risks of simple models, and hence,
we keep our discussion focused on linear ones.

To attack models with an arbitrary loss function, we first
estimate the Hessian on the public data H, and then we
obtain the gradient with respect to the deleted sample ac-
cording to Eq. (15). We note that the Hessian matrix may
be too large to represent in practice for larger models, since
it scales quadratically in the number of model parameters.
However, it is straightforward to use efficient implemen-
tations of Hessian-vector Product (HVP) in deep learning
frameworks in Equation (15), and so there is no need to
explicitly represent the Hessian. Other influence matrices
can likewise be used in place of the Hessian, such as the
Fisher information matrix described in (Ly et al., 2017; Bae
etal., 2022; Teso et al., 2021).

Newton’s update is a second-order Taylor approximation
that is exact when it is applied to linear regression. When
the loss function depends on higher-order moments, the
approximation quality worsens, and the performance of our
attack correspondingly degrades.

3.3. Multiclass Classification and Label Inference

The attack outlined in Eq. (15) provides an estimate of
the gradient of the parameters with respect to the deleted
sample V g_g+£(53; z,y). Recovering the sample from the
parameter gradient can be done by using Eq. (8) in Sec-
tion 3.1 and replacing the embedding function ¢(x) with
V s—p+{(3; x,y) in the inverse problem.

For models that make use of a single linear layer after a
(potential) embedding function, we can simply recover the
embedding directly using Eq. (17). Otherwise, we need to
infer the deleted label y from the available information. This
is not straightforward when there are multiple class-specific
parameters in multi-class classification tasks.

Fortunately, most multi-class classification approaches
make use of a softmax nonlinearity to output a probabil-
ity vector over the space Py,. As such, the derivative of the
loss with respect to the bias parameter corresponding to the
correct deleted label y should be negative, while the remain-
ing bias terms should have a positive derivative for most
standard loss functions. For example, the derivative of the
bias terms of the softmax nonlinearity under cross-entropy
lossis Vy, [—In f, (; 87)] = f;(x; 1) —1[j = y]. Where
b; denotes the bias term of the j-th class, and [(x; BT) de-
notes the probability assigned to label 7 by the model. Thus,
we simply impute the deleted label to be

gj:argmjnvbjﬁ(ﬁ;m,y)|ﬁzﬁ+. (18)
j

With this label inference technique, our attack can also be
generalized to attacking multi-class classification models.

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

References

Bae, J., Ng, N., Lo, A., Ghassemi, M., and Grosse, R. B.
If influence functions are the answer, then what is the
question? Advances in Neural Information Processing
Systems, 35:17953-17967, 2022.

Balle, B., Cherubin, G., and Hayes, J. Reconstructing train-
ing data with informed adversaries. In 2022 IEEE Sympo-
sium on Security and Privacy (SP), pp. 1138-1156. IEEE,
2022.

Bertran, M., Tang, S., Kearns, M., Morgenstern, J., Roth,
A., and Wu, Z. S. Scalable membership inference attacks
via quantile regression. arXiv preprint arXiv:2307.03694,
2023.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot,
N. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 141-159. IEEE, 2021.

Cao, Y. and Yang, J. Towards making systems forget with
machine unlearning. In 2015 IEEE symposium on security
and privacy, pp. 463—-480. IEEE, 2015.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, U., et al. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633-2650, 2021.

Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and
Tramer, F. Membership inference attacks from first prin-
ciples. In 2022 IEEE Symposium on Security and Privacy
(SP), pp- 1897-1914. IEEE, 2022.

Carlini, N., Hayes, J., Nasr, M., Jagielski, M., Sehwag,
V., Tramer, F., Balle, B., Ippolito, D., and Wallace, E.
Extracting training data from diffusion models. In 32nd
USENIX Security Symposium (USENIX Security 23), pp.
5253-5270, 2023.

Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M.,
and Zhang, Y. When machine unlearning jeopardizes
privacy. In Proceedings of the 2021 ACM SIGSAC con-
ference on computer and communications security, pp.
896-911, 2021.

Chourasia, R., Shah, N., and Shokri, R. Forget unlearning:
Towards true data-deletion in machine learning. arXiv
preprint arXiv:2210.08911, 2022.

Dick, T., Dwork, C., Kearns, M., Liu, T., Roth, A., Vi-
etri, G., and Wu, Z. S. Confidence-ranked recon-
struction of census microdata from published statis-
tics. Proceedings of the National Academy of Sci-
ences, 120(8):€2218605120, 2023. doi: 10.1073/pnas.

2218605120. URL https://www.pnas.org/doi/
abs/10.1073/pnas.2218605120.

Ding, F., Hardt, M., Miller, J., and Schmidt, L. Retiring
adult: New datasets for fair machine learning. Advances
in Neural Information Processing Systems, 34, 2021.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cal-
ibrating noise to sensitivity in private data analysis. In
Theory of Cryptography: Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7,
2006. Proceedings 3, pp. 265-284. Springer, 2006.

Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., and
Ristenpart, T. Privacy in pharmacogenetics: An {End-to-
End} case study of personalized warfarin dosing. In 23rd
USENIX security symposium (USENIX Security 14), pp.
17-32, 2014.

Gao, J., Garg, S., Mahmoody, M., and Vasudevan, P. N.
Deletion inference, reconstruction, and compliance in
machine (un) learning. arXiv preprint arXiv:2202.03460,
2022.

Ginart, A., Guan, M., Valiant, G., and Zou, J. Y. Making ai
forget you: Data deletion in machine learning. Advances
in neural information processing systems, 32, 2019.

Golatkar, A., Achille, A., and Soatto, S. Eternal sunshine of
the spotless net: Selective forgetting in deep networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304-9312, 2020.

Gupta, V., Jung, C., Neel, S., Roth, A., Sharifi-Malvajerdi,
S., and Waites, C. Adaptive machine unlearning. Ad-
vances in Neural Information Processing Systems, 34:

16319-16330, 2021.

Hampel, F. R. The influence curve and its role in robust es-

timation. Journal of the american statistical association,
69(346):383-393, 1974.

1zzo, Z., Smart, M. A., Chaudhuri, K., and Zou, J. Approx-
imate data deletion from machine learning models. In
International Conference on Artificial Intelligence and
Statistics, pp. 2008-2016. PMLR, 2021.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International conference
on machine learning, pp. 1885-1894. PMLR, 2017.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

https://www.pnas.org/doi/abs/10.1073/pnas.2218605120
https://www.pnas.org/doi/abs/10.1073/pnas.2218605120

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

Ly, A., Marsman, M., Verhagen, J., Grasman, R. P., and
Wagenmakers, E.-J. A tutorial on fisher information.
Journal of Mathematical Psychology, 80:40-55, 2017.

Neel, S., Roth, A., and Sharifi-Malvajerdi, S. Descent-to-
delete: Gradient-based methods for machine unlearning.
In Algorithmic Learning Theory, pp. 931-962. PMLR,
2021.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. Advances in neural information pro-
cessing systems, 20, 2007.

Salem, A., Bhattacharya, A., Backes, M., Fritz, M., and
Zhang, Y. {Updates-Leak}: Data set inference and recon-
struction attacks in online learning. In 29th USENIX se-
curity symposium (USENIX Security 20), pp. 1291-1308,
2020.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE symposium on security and privacy
(SP), pp- 3—18. IEEE, 2017.

Teso, S., Bontempelli, A., Giunchiglia, F., and Passerini,
A. Interactive label cleaning with example-based ex-
planations. Advances in Neural Information Processing
Systems, 34:12966—-12977, 2021.

Wu, X., Fredrikson, M., Wu, W., Jha, S., and Naughton, J. F.
Revisiting differentially private regression: Lessons from
learning theory and their consequences. arXiv preprint
arXiv:1512.06388, 2015.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Zhang, R. and Zhang, S. Rethinking influence functions
of neural networks in the over-parameterized regime. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 9082-9090, 2022.

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

Algorithm 1 Reconstruction Attack on Linear Regression

Inputs: Public Samples Xy, € R™* @+ ¢ € R™, Parameter Vectors 8+ and 4~ € RI+?
Output: Reconstructed Sample =
Estimate the covariance matrix C' = X pTub
Compute = using Eq. (5)

Normalize using Eq. (6), Z; = &;/Z441, Vi € [1,d]
Return first d dimensions of =

X, pub

Algorithm 2 Generalized Attack

Required: Public Samples X, € R™*(@+D ¢\ € R™, Parameter Vectors 37 and B~ € R4+1
Required: Loss function ¢(3), Embedding function ¢
Output: Reconstructed Sample &
Estimate the Hessian H using Eq. (16) (for linear regression, this is %XPTubXpub)
if / is MSE then
Reconstruct the embedding z using Eq. (7)
else
Reconstruct the embedding Z using Eq. (15)
end if
if o(x) = [z, 1] then
Directly recover & = 2
else
Reconstruct the input & using Eq. (8)
end if
Return first d dimensions of &

A. Algorithms

B. Additional Related Work

There is a large body of work on membership inference and reconstruction attacks on static models that is too long to survey
here; see e.g. (Shokri et al., 2017; Carlini et al., 2021; 2022; Bertran et al., 2023; Carlini et al., 2023) for exemplars. This
line of work focuses on attacking very large models, and the techniques developed within it fail when applied to simple
models; see Appendix C. Our point of departure is that we focus on very simple models — but our attacker has access to
two versions of the model, from both before and after a deletion operation. Several papers (Fredrikson et al., 2014; Wu et al.,
2015) give “model inversion” attacks on linear models. These kinds of attacks are significantly weaker; given a model f,
they infer partial information about « given the remainder of = and f(z), rather than from the parameters of f.

Several papers study privacy attacks on pairs of models that result from an update. The most closely related is Chen et al.
(2021), which was the first to explicitly note the added privacy risk inherent in machine unlearning, and give a membership
inference attack that can be launched on pairs of models that result from an unlearning operation. Their membership
inference attack is based on constructing shadow models, and they evaluate it on a range of model types, with performance
increasing with model complexity. In comparison to Chen et al. (2021), our goal is reconstruction, which aims to recover
the deleted point entirely, rather than membership inference, which aims only to recover a single bit of information (the
presence or absence of an attack point in the training data). Salem et al. (2020) give reconstruction attacks in the context of
single-gradient model updates that attempt to recover the point used to update the model. Their adversary operates in a more
constrained setting than ours does, and does not have access to the model parameters—only API access to the model, and
they attack a much weaker form of model update. They give an attack based on training shadow models and an auto-encoder
to reconstruct samples used to update complex models (convolutional neural networks). In comparison, we assume that
the adversary has access to the model parameters, but our attack can be used to reconstruct data points from much simpler
models even when they are fully retrained; our attacks are also much more computationally efficient.

Finally, we mention Balle et al. (2022) which gives reconstruction attacks in a different model in which the adversary has
more information than the standard attack scenario — in particular, the adversary studied in Balle et al. (2022) knows the

7

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

entire training set except one example and aims to reconstruct the unknown example.

C. Membership Inference Attacks on Linear Models

Linear models usually have lower privacy risks compared to neural networks because the parameters of a linear model are
significantly fewer. To demonstrate the low privacy risks, we conduct a state-of-the-art membership inference attack (MIA)
proposed by (Carlini et al., 2022) — Likelihood Ratio Attack (LiRA) — on the same tabular tasks. The goal of MIA is to
determine whether a sample is in the training set of the target model.

On each task, we split the dataset into three splits, including 40% for training the target model, another 40% as the public
samples for learning shadow models, and the rest 20% as the holdout set for evaluation. After training the target model
on the private training set, we train 64 shadow models using the same optimization algorithm on the public samples with
Bootstrap. Then, we use the joint set of the private samples and the holdout samples as samples under attack, and evaluate
the attack performance.

As shown in Figure 2, the attack performance is close to random guessing, which implies that it is already challenging to
determine which sample has been used in training when the target model is linear.

Model = ACS Income Regression - Ridge Model = ACS Income Level Prediction - LogReg Model = ACS Income Level Prediction - SVM

(U —
104 CA
© — X
g 107
g
= -3
£ 10
£ .
o 107
2
= i
107
107°
0% 100 107 10 10 0% 10 107 10 10 0% 1% 107 10 10
False Positive Rate False Positive Rate False Positive Rate

Figure 2: Membership inference attacks on ACS tasks.

D. Experiments

We evaluate our attack on both tabular and image data and on both classification and regression tasks. To simulate the
process of deleting a single sample from a trained model, we first train a model with tuned hyperparameters on Xy, Ypriv t0
obtain A%, and then retrain the model with the same hyperparameters but on Xy \ @, ypriv\y to obtain 3. We note here
that we do not use any approximate ‘“machine unlearning” methods to obtain 5~ and rather directly implement the “full
retraining” gold standard.

Our attack requires public samples from the training data distribution but does not require any knowledge of the deleted data
point (either its features or its label). We compare our attacks to two baselines that also make use of public data:

“Avg”’: T = % D oac X T This “sanity check” baseline simply computes the average of the public samples as its guess for
the deleted sample.

“MaxDiff”: & = arg max,ex,,, ||z7 (8" — 7). This attack finds the sample among all public samples that leads to the
maximum prediction difference across the two models, and uses this as its guess for the deleted sample.

These baseline attacks exploit the potential similarity between public and private training data. The “MaxDiff” baseline
additionally incorporates information from the parameter change between the models. Since Salem et al. (2020) considers a
different threat model to ours (black box access) and a weaker update model (single gradient step over updated sample), we
show a comparison in Appendix E

Each dataset is randomly split into two halves, one of which serves as the private training data, and the other the public

8

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

samples. For each sample within the private training data, we retrain a model without that sample, and launch our attack (as
well as the baseline attacks) in an attempt to recover that sample.

To emulate realistic scenarios for the model maintainer, when estimating 37, we optimize the hyperparameter — the strength
of 12 regularization A\ — on the private training set { Xpriv, Ypriv }» and keep it fixed when estimating 5~. Additional results
on attacking unregularized models are presented in Appendix F. The raw classification performance of the target models is
shown in Appendix G.

We evaluate the success of individual attacks using cosine similarity between the deleted and reconstructed samples. We
plot the Cumulative Distribution Function (CDF) of cosine similarity values between deleted samples and reconstructions,
across all samples in the private data; a sharp increase near 1 implies near-perfect reconstruction.

D.1. Image Data

We use three simple image classification datasets, Fashion MNIST (FMNIST) (Xiao et al., 2017), MNIST (LeCun et al.,
1998), and CIFAR10 (Krizhevsky et al., 2009). FMNIST and MNIST consist of 28 x 28 grayscale images, while CIFAR10
contains 32 x 32 x 3 RGB images; the objective in all cases is 10-way classification. As preprocessing, we normalized the
input features to the [—1, 1] range. We attack several kinds of models:

Cross-entropy Loss for Multiclass Classification We attack a linear model with a softmax nonlinearity, trained to minimize
the standard cross-entropy loss £cg (83, x,y) = —log o, (z T 3) + || 8]|3.

We attack this model using Algorithm 2; in this setting, we do not need to run Eq (8) since the model contains a linear layer
over the raw inputs z, and, therefore, the estimated gradient of the deleted sample w.r.t. the parameters 37 is proportional to
the deleted sample as described in Eq. (17). The Hessian matrix is empirically estimated from Xup.

Ridge Regression with Random Features We attack a linear model over an embedding function ¢, which generates
random Fourier features (Rahimi & Recht, 2007), as £riage (3, ¢(x),y) = ||¢(x) T B8 — y||3 + A[|B]|3. This formulation has
an analytical solution for the Hessian w.r.t. ¢(x), which is H = ¢(X) T ¢(X), but requires embedding inversion using Eq.

(8).

Cross-entropy Loss with Random Features This combines the difficulty of both of the above settings: a lack of access to a
closed-form solution for the model update, with the need to invert an embedding.

Figure 3 Shows the performance of our attack for all three model types on Fashion MNIST, MNIST, and CIFAR10. We
consistently recover samples that are highly similar to the deleted sample for all considered model types. Figures 1, 4 and 5
show randomly sampled deletions, alongside their recovered closest match according to HRec and MaxDiff on CIFARI0,
Fashion MNIST, and MNIST respectively in the most challenging scenario (cross entropy loss over random Fourier features).
We show the results for the other model types in Appendix H.

D.2. Tabular Data

We use an income prediction task defined over data from the American Community Survey (ACS) (Ding et al., 2021) (2018
data). ACS Income data includes numerical income values which we use as the target for a regression task; on the same data,
we can define a classification task by binarizing the numerical income - whether the income is higher than 50K or not. We
preprocess the data with one-hot encoding of categorical columns and normalization of numerical columns so that all values
lie between O and 1.

Ridge Regression for Income Prediction. The attack here is straightforward, and we directly apply Eq. (4) and the
intercept normalization trick. Plots in the first row of Figure 6 illustrate the attack performance. If we knew the covariance
matrix of the private data and A, our attack in this setting would be guaranteed to perfectly recover the deleted sample.
Hence our only source of estimation error comes from the fact that we need to estimate the covariance matrix from public
samples and act as if A = 0. As our results show, we still obtain nearly perfect reconstruction.

Ridge Regression with Random Features. Rather than performing ridge regression on the raw features, we now attack a
ridge regression model trained on top of random Fourier features (Rahimi & Recht, 2007). We assume the random Fourier
features are known to the attacker, along with the model weights (both of these would be needed to be able to evaluate the
model).

We first apply our attack to reconstruct the embedding z of the deleted sample, and then we solve an inverse problem to

9

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

reconstruct the original features. The attack performance is visualized in the second row of Figure 6; our method significantly
outperforms both baselines, obtaining almost perfect reconstruction.

Binary Classification for Income Level Prediction. For this binary classification task, we attack two kinds of models:
logistic regression and support vector machines (SVMs).

Both logistic regression and SVMs with the squared hinge loss have analytical expressions for their Hessian matrices, and
they have the following form:

H = Xy D Xpub, (19)
where D € RM*M s a diagonal matrix. For logistic regression, the diagonal terms are D;; = o(z; 37)(1 — o(x] 1)),
where z; is i-th sample in the public data, and o is the sigmoid function; for SVMs, it is D;; = 1(1 — yixlTBJr > 0), where
1 is the indicator function. Thus, the reconstruction can be obtained by computing H (3" — 37) and using the intercept
normalization trick.

Figure 7 shows the performance of these attacks. Our attack HRec outperforms the baselines across all datasets and model
classes, showing that our attacks remain successful when launched against simple tabular classification models.

Binary Classification with Random Features. We also attack binary classification models trained over an enriched set of
random Fourier features. Figure 8 presents performance curves for our attack, as well as baselines. Once again we see that
our attack performs exceptionally well. When attacking logistic regression models, our attack outperforms all baselines.
When attacking SVM models the MaxDiff baseline also performs quite well.

E. Additional Comparisons

Here we provide a limited comparison of Updates-leak (Salem et al., 2020) against our method and baselines for the same
simple model architecture (cross-entropy loss over a linear model on top of 4096 random Fourier features). We stress
that the threat model for Updates-Leak differs from our own in two important ways. First, they assume query access to
the model, while we assume access to the parameters. Second, we carry out our attack on two models, fully trained to
convergence on two different datasets, ((Xpriv, Ypriv) and (Xpriy \ @, Ypriv \ ¥)). In contrast, Updates-leak instead attacks the
difference between a model trained on (X \ 2, Ypriv \ ¥) and an updated model where in the update, only a single gradient
descent step is taken on the ‘update’ sample (z, y) (single sample attack version). The Updates-Leak approach also incurs a
significantly higher computational cost due to its shadow model and encoder learning approach. For these reasons, we limit
the comparison to a single model architecture on CIFAR10 while stressing this comparison is not ‘apples to apples’. In
particular, even though we plot the reconstrution cosine similarity curves on the same axis (and see that ours improves), our
technique and UpdatesLeak are attacking different pairs of models (we attack the model that results from full retraining,
whereas they attack the model that results from a single gradient update).

Figure 9 shows the cosine similarity comparison, and Figure 10 show some example reconstructions for Updates-Leak in
this scenario. We leveraged their publicly available code to produce these comparisons, using their default configuration
(10,000 shadow models are used for training, and their DC-GAN generator is trained for 10,000 epochs on the shadow
model dataset).

10

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

Cross Entropy RBF Ridge RBF Cross Entropy
L — HRec (ours) L0 L0
= — Avg
o 0.8 —— MaxDiff 0.8 0.8
o
g 0.6 0.6 0.6
T
s
5 04 0.4 0.4
£
2
o 0.2 0.2 0.2
) J
0.0 0.0 0.0
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Cosine similarity Cosine similarity Cosine similarity
(a) Fashion MNIST results
Cross Entropy RBF Ridge RBF Cross Entropy
L p— HRec (ours) 1.0 1.0
= — Avg
© 0.8 —— MaxDiff 0.8 0.8
8
g 0.6 0.6 0.6
T
Qo
5 04 0.4 0.4
£
2
o 0.2 0.2 0.2
) J
0.0 0.0 0.0
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Cosine similarity Cosine similarity Cosine similarity
(b) MNIST results
Cross Entropy RBF Ridge RBF Cross Entropy
1.0 1.0 1.0
@
908 0.8 0.8
S
% 0.6 0.6 0.6
o
=]
504 0.4 0.4
£
2
o 0.2 = HRec (ours) 0.2 0.2
a — Avg
0.0 —— MaxDiff 0.0 0.0
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Cosine similarity Cosine similarity Cosine similarity

(c) CIFARI1O results

Figure 3: Cumulative distribution function of cosine similarity between the target (deleted) sample and the reconstructed
sample via the average, MaxDiff, and HRec (our) attack on Fashion MNIST, MNIST, and CIFAR10 for three model
architectures (linear cross-entropy, ridge regression over 4096 random Fourier features, and cross-entropy over 4096 random
Fourier features). Here lower curves dominate higher curves. Our attack achieves better cosine similarity with the deleted
sample across all settings; the effect is especially apparent in the denser CIFAR10 dataset.

11

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

]

(8]

2

IS

m

| 5

=

: l
(%]

Q

-4

I

=

(m)

x

(18]

=

—

8]

o

<

w

| 5

=]

U -
w _l a
-4

I

=
i
b

2 o
=

Figure 4: Sample reconstructions on Fashion MNIST for a 40K parameter model (cross-entropy over random Fourier
features of the raw input). We randomly chose one deleted sample per label (shown in rows 1 and 4) and compared them
against the reconstructed sample using our method (HRec, rows 2 and 5) and a perturbation baseline (MaxDiff, rows 3
and 6) which searches for the public sample with the largest prediction difference before and after sample deletion. HRec
produces reconstructions that are highly similar to the deleted images.

12

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

Figure 5: Sample reconstructions on MNIST for a 40 K parameter model (cross-entropy over random Fourier features of
the raw input). We randomly chose one deleted sample per label (shown in rows 1 and 4) and compared them against the
reconstructed sample using our method (HRec, rows 2 and 5) and a perturbation baseline (MaxDiff, rows 3 and 6) which
searches for the public sample with the largest prediction difference before and after sample deletion. Reconstructions from
HRec are more similar to the deleted images than those from MaxDiff.

Target

HRec (ours) Target MaxDiff HRec (ours)

MaxDiff

13

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

Method = Ridge | State = NY Method = Ridge | State = CA Method = Ridge | State = TX
10 = HRec (ours)
© —— MaxDiff
jo)]
E 0.8 Avg
i
T 0.6
3
5
£ 04 | | |
o
&
& 0.2
0.0

Method = RBF Ridge | State = NY Method = RBF Ridge | State = CA Method = RBF Ridge | State = TX

0.8
0.6

0.4

0.2

Proportion under target
=

0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Cosine similarity Cosine similarity Cosine similarity

Figure 6: ACS Income Regression. Target models are ridge regression with tuned hyperparameters on original features
(first row), and over random Fourier features (second row). ACS Income data from three states are used to demonstrate
the effectiveness of our attack. Given the analytical single-sample update rules of linear regression, our attack (HRec)
reconstructs the deleted sample almost perfectly on all datasets and different embedding functions.

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

Method = LogReg | State = NY Method = LogReg | State = CA Method = LogReg | State = TX
1.0 — HRec (ours)
@ —— MaxDiff
j@)]
E 0.8 Avg
@
T 06 |
3
5
£ 04
S]
&
g 0.2
0.0 ‘J
Method = SVM | State = NY Method = SVM | State = CA Method = SVM | State = TX
1.0
g
E 0.8
]
T 06
3
5
£ 04
o
&
a 02
0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 000 025 0.50 0.75 .00
Cosine similarity Cosine similarity Cosine similarity

Figure 7: ACS Income Level Prediction. Target models are logistic regression (first row) and SVM (second row) for binary
classification tasks. The analytical form of the single-sample update doesn’t exist anymore, however, our approximation
using Newton’s update facilitates the outstanding performance of HRec among all attacks. Even though the reconstruction is
not perfect due to approximation errors, a large number of deleted samples can still be reconstructed with high similarity
scores.

15

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

Method = RBF LogReg | State = NY Method = RBF LogReg | State = CA Method = RBF LogReg | State = TX

1.0 = HRec (ours)
© —— MaxDiff
o
E 0.8 — Avg
)
T 06
3 1
&
£ 04
<}
9]
& 0.2
0.0 -

Method = RBF SVM | State = NY Method = RBF SVM | State = CA

1.0 1
0.8
0.6
0.4
0.2
0.0

Proportion under target

Method = RBF SVM | State = TX

L

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Cosine similarity Cosine similarity

Cosine similarity

Figure 8: ACS Income Level Prediction using Random Fourier Features. Target models now are augmented with fixed
random features. HRec still outperforms the two comparison partners when the target model is Logistic Regression, and

performs similarly to MaxDiff when SVM is used.

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

L0 HRec (ours)
Avg
*g 0.8 —— MaxDiff
= —— UpdatesLeak
]
306
D
0
S 0.4
S
o
0.2
o
0.0

0.0 0.2 0.4 0.6 0.8 1.0
cosine similarity

(a) CIFAR10

Figure 9: Cumulative distribution function of cosine similarity between the target (deleted) sample and the reconstructed
sample via the average, MaxDiff, Updates-Leak, and HRec (our) attack on CIFAR10 on a simple model (cross-entropy
loss over a linear model on top of 4096 random Fourier features). All attacks save for Updates-Leak operate against
the full retraining baseline, that is the comparison between two models trained from scratch until convergence in a
dataset with and without the ‘deleted’” sample ((Xpriv, Ypriv) and (Xpriv \ 2, Ypriv \ ¥)), Updates-Leak instead attacks
two models, one trained until convergence on the dataset without the sample ((Xpriy \ 2, Ypriv \ ¥)), and one that took
a single gradient descent step on the loss of the updated sample z, y. Here lower curves dominate higher curves. Our
attack achieves better cosine similarity with the deleted sample.

17

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

Figure 10: Sample reconstructions for Updates-Leak on CIFAR10. Original images and their corresponding reconstruction
are shown side by side in an alternating fashion. The model architecture is cross-entropy loss over a linear model on top of
4096 random Fourier features. The models before and after the update differ in a single gradient descent step being taken on
the update sample (x, y).

18

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

F. Attacking Unregularized Models

In our main experiments, we emulate the more realistic situation where the model maintainer tunes the hyperparameter of
the target model on the entire dataset, and keeps it fixed during unlearning. Since the impact of regularization on the attack
performance is rather challenging to analyze and not immediately obvious, we here present results on attacking models
without regularization.

F.1. ACS Income Regression

On this task, the model maintainer directly optimizes the objective Equation (1) without the regularization term:
Eh =argﬂgn\|Xﬁ—yII§ (20)

This problem admits an analytical expression for 3% and 3~, which can be written as:

BT = C7 X i Yprivs (1)

B™ = (C—az") " Xpipriv — '), (22)

where C' = XpTriVXpﬁv is the covariance matrix. In the scenario where the inverse of the covariance matrix doesn’t exist, we

use the Moore—Penrose inverse instead. Our attack still stays the same.

The results are presented in Figure 11, and we can see that without regularization

Method = OLS | State = NY Method = OLS | State = CA Method = OLS | State = TX
—— HRec (ours)

0.8
0.6

0.4

Proportion under target

0.2

0.0 E—
Method = RBF OLS | State = NY Method = RBF OLS | State = CA Method = RBF OLS | State = TX

0.8
0.6
0.4

0.2

Proportion under target

0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Cosine similarity Cosine similarity Cosine similarity

Figure 11: ACS Income Regression. Target models are ordinary linear regression on original features (first row), and over
random Fourier features (second row). Our attack HRec reconstructs the deleted sample almost perfectly.

19

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

F.2. Image Classification Tasks

Here we additionally show results across CIFAR10, MNIST, and Fashion MNIST on the more challenging target model
scenario (RBF Cross Entropy). For these results, the model maintainer does not use any form of regularization. Results are
shown in Figure 12.

RBF Cross Entropy

= HRec (ours)
Avg
—— MaxDiff

I e o
IS o =)

Proportion below target

e
o

o
=)

0 0.25 0.5 0.75 1
Cosine similarity

(a) Fashion MNIST results

RBF Cross Entropy

== HRec (ours)
Avg

o]
08 —— MaxDiff
£
306
[
_Q
S04
£
2
o 02
&

0.0

0 0.25 05 0.75 1
Cosine similarity
(b) MNIST results
RBF Cross Entropy

U — HRec (ours)
o Avg
©08 —— MaxDiff
s
g 0.6
©
Q
8 04
£
2
02
&

0.0

0 0.25 0.5 0.75 1

Cosine similarity

(c) CIFARI1O results

Figure 12: Cumulative distribution function of cosine similarity between the target (deleted) sample and the reconstructed
sample via the average, MaxDiff, and HRec (our) attack on Fashion MNIST, MNIST, and CIFAR10 for a target model
using cross-entropy over 4096 random Fourier features. In this scenario, the model maintainer does not use any form of
regularization when training the original or updated model. Here lower curves dominate higher curves. Our attack achieves
better cosine similarity with the deleted sample across all settings; the effect is especially apparent in the denser CIFAR10
dataset.

20

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

G. Performance of Target Models

G.1. ACS Income Tasks

Table 1: Performance of target models on ACS Income tasks. Regression tasks are evaluated using 2, which indicates the
portion of explained variance, and classification tasks are evaluated using F'l1 score since class labels are not balanced.

STATE NY CA TX
TASK TARGET MODEL +RBF +RBF +RBF
ACS INCOME REGRESSION (R2) RIDGE REGRESSION 0.2755 | 0.32712 | 0.30139 | 0.3510 | 0.3089 | 0.3510
LOGISTIC REGRESSION | 0.7154 | 0.7230 | 0.7313 | 0.7413 | 0.6889 | 0.7009
ACS INCOME LEVEL CLASSIFICATION (F1) LINEAR SVM 0.7099 | 0.7149 | 0.7345 | 0.7325 | 0.6868 | 0.696%

G.2. Image tasks

Table 2: Out of sample accuracy of target models on Image tasks

DATASET

LINEAR CROSS-ENTROPY | RBF RIDGE | RBF CROSS ENTROPY
CIFAR10 39.5% 48.7% 50.4%
MNIST 91.6% 96.2% 96.4%
FASHION MNIST 84.5% 87.3% 88.4%

21

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

H. Additional Results on Image Datasets

"
©
o
©
©

Target

4
(¢
-
A

HRec (ours)

w
-
5

)
v
7]
9
I

MaxDiff
MaxDiff

Target
Target

n
-
3
C)
1
o
«
T

HRec (ours)

MaxDiff
MaxDiff

Figure 13: Sample reconstructions on CIFAR10. Rows 1-3 rows show results of attacking a linear cross-entropy model,
and rows 4-6 show similar results for ridge regression over 4096 random Fourier features. We randomly chose one deleted
sample per label (shown in rows 1 and 4) and compared them against the reconstructed sample using our method (HRec,
rows 2 and 5) and a perturbation baseline (MaxDiff, rows 3 and 6) which searches for the public sample with the largest
prediction difference before and after sample deletion. HRec produces reconstructions that are highly similar to the deleted
images.

22

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

Target

MaxDiff

HRec (ours)

HRec (ours) Target

MaxDiff

=Y =3 =3 W o -y

EBEBEDPD
PP =

Figure 14: Sample reconstructions on Fashion MNIST. Rows 1-3 rows show results of attacking a linear cross-entropy
model, and rows 4-6 show similar results for ridge regression over 4096 random Fourier features. We randomly chose one
deleted sample per label (shown in rows 1 and 4) and compared them against the reconstructed sample using our method
(HRec, rows 2 and 5) and a perturbation baseline (MaxDiff, rows 3 and 6) which searches for the public sample with the
largest prediction difference before and after sample deletion. HRec produces reconstructions that are highly similar to the

deleted images.

23

1
§

Target

| r'-!
R
Frr e

HRec (ours)

MaxDiff
H

ioa
»
i3
S

HRec (ours)

.
1
b
U
]

Reconstruction attacks on Machine Unlearning: Simple Models are Vulnerable

o
()
o
o
©

i

Target

HAKGEA
slélalsle
HSEEE
Sll713]¢
BlAFBEA
5lbl71%] 2

Figure 15: Sample reconstructions on MNIST. Rows 1-3 rows show results of attacking a linear cross-entropy model, and
rows 4-6 show similar results for ridge regression over 4096 random Fourier features. We randomly chose one deleted
sample per label (shown in rows 1 and 4) and compared them against the reconstructed sample using our method (HRec,
rows 2 and 5) and a perturbation baseline (MaxDiff, rows 3 and 6) which searches for the public sample with the largest

prediction difference before and after sample deletion. HRec produces reconstructions that are highly similar to the deleted
images.

HRec (ours)

MaxDiff
HRec (ours)

MaxDiff

Target
Target

HRec (ours)
HRec (ours)

MaxDiff
MaxDiff

24

