
Scalable Private Set Union Beyond Uniform Weighting

Justin Y. Chen
MIT

justc@mit.edu

Vincent Cohen-Addad
Google Research

cohenaddad@google.com

Alessandro Epasto
Google Research

aepasto@google.com

Morteza Zadimoghaddan
Google Research

zadim@google.com

May 7, 2024

Abstract

In the differentially private set union problem, users contribute sets of items as input, and the output
is a subset of the union of all items. Algorithms for this problem seek to output as many items as possible
while maintaining differential privacy with respect to the addition or removal of an individual user.

The basic solution to this problem maintains a weight over each item. Each user contributes uniformly
to the items in their set, random noise is added to the weights, and items with noisy weight above a
certain threshold are output. The only scalable (i.e., distributed) algorithms for this problem from prior
work are this basic algorithm and an iterative method which repeatedly calls the basic algorithm, ignoring
items found in prior invocations.

In this work, we give an improved weighting algorithm over basic uniform weighting. Our algorithm
reroutes weight from items with weight far above the threshold to items with smaller weight, thereby
increasing the probability that less frequent items are output. The algorithm is scalable and does not
suffer any privacy loss when compared to the basic algorithm. We prove that our algorithm will never
underperform the basic algorithm and show experimentally that replacing the basic algorithm with ours
yields the best results among scalable algorithms for the private set union problem.

1 Introduction
In the setting of the private set union problem (also known as private partition selection), users each have
a subset of items from an unknown and possibly infinite universe of items. The goal is to output as many
of the items which appear in the union of the users’ sets as possible while maintaining user-level differential
privacy. This problem generalizes several tasks in differential privacy such as outputting queries asked to a
search engine [KKMN09], discovering words and phrases used in emails or text messages [GGK+20], or as a
prerequisite step to run GROUPBY operations over items in a SQL system [DVGM22]. Real-world datasets
for these applications can be massive, precluding solutions which require storing the input in-memory on a
single machine. In this work, we focus on scalable solutions to private set union that can be implemented in
a distributed framework (e.g., MapReduce).

Differential privacy guarantees that the output of any algorithm for this problem cannot depend much
on any given user’s set. In particular, for any reasonable setting of privacy parameters, private algorithms
cannot output items which appear in only a single set, implying that essentially no items can be output if
the users’ sets are disjoint. On the other hand, it is possible for a private algorithm to output items which
appear in many different sets. This intuition is operationalized in the following approach.

Algorithms for private set union start by subsampling each user’s set to bound the maximum number
of items per set. Then, most algorithms proceed by assigning a weight to each item in the union, adding
Gaussian (or Laplace) noise to each weight, and outputting all items with noised weight above a certain

1

threshold [KKMN09, GGK+20, CWG22, SDH23]. The amount of noise and value of the threshold depend
on the privacy parameters and the sensitivity of the weighting function to the addition or removal of any
individual user’s set. Loosely, the contribution of each user to the item weights must be bounded in order
to achieve differential privacy. Algorithms within this framework differ in the choice of how to assign item
weights given a collection of users’ sets.

A basic strategy is for each user to contribute equal weight to each of the items in their set [KKMN09].
It is easy to bound the sensitivity of this basic weighting and thus to prove differential privacy. On the other
hand, the basic weighting algorithm is lossy in that it may overallocate weight far above the threshold to
high frequency items, missing an opportunity to boost the weight of items closer to the decision boundary.

Despite its simplicity, the basic weighting algorithm is essentially the only known solution to the private
set union problem which is amenable to implementation in a distributed framework. Other weighting schemes
are greedy and inherently sequential [GGK+20, CWG22]. To our knowledge, the sole exception is the scalable,
iterative partition selection (SIPS) scheme of [SDH23]. Even so, the core computation of this algorithm is
repeated invocations of the basic weighting algorithm.

In this work, we design an adaptive, non-uniform weighting algorithm that reroutes overallocated weight
to less frequent items. Our algorithm is computationally efficient and can be implemented in a distributed
framework. Furthermore, it suffers no privacy loss compared to basic weighting—given the same privacy
parameters, both algorithms utilize exactly the same amount of noise and the same threshold. Designing
an adaptive algorithm with this property presents a non-trivial challenge. As a corollary, we prove that our
algorithm will never underperform the basic algorithm, and we show examples where it provably outperform
SIPS by a large margin. Finally, we conduct experiments on nine datasets with size up to the billion-scale.
Our algorithm, either by itself or as a plug-in replacement for the basic weighting algorithm in SIPS, performs
the best out of all scalable baselines on every dataset and is competitive with the sequential baselines.

1.1 Related Work
The differentially private set union problem was first studied in [KKMN09]. They utilized the now-standard
approach of subsampling to limit the number of items in each users’ set, constructing weights over items,
and thresholding noised weights to produce the output. They proposed a version of the basic weighting
algorithm which uses the Laplace mechanism rather than the Gaussian mechanism. This algorithm was also
used in [WZL+20] within the context of a private SQL system.

The problem received renewed study in [GGK+20] where the authors propose a generic class of greedy,
sequential weighting algorithms which empirically outperform basic weighting (with either the Laplace or
Gaussian mechanism). [CWG22] gave an alternative greedy, sequential weighting algorithm which leverages
item frequencies in cases where each user has a multiset of items. [DVGM22] analyzed in depth the optimal
strategy when each user has only a single item (all sets have cardinality one). This is the only work that
does not utilize the weight and threshold approach, but it is tailored only for this special case.

The work most related to ours is SIPS [SDH23] which proposes the first algorithm other than basic
weighting which is amenable to implementation in a distributed environment. SIPS splits the privacy budget
over a small number of rounds, runs the basic algorithm as a black box each round, and iteratively removes
the items found in previous rounds for future computations. This simple idea leads to large empirical
improvements, giving a scalable algorithm that has competitive performance with sequential algorithms.

2 Preliminaries
Definition 2.1 (Private Set Union). In the private set union (aka private partition selection) problem, there
are n users with each user u having a set Su of items from an unknown and possibly infinite universe of
items: the input is of the form S = {(u, Su)}u∈[n]. The goal is to output a subset of the union of the users’
sets U = ∪u∈[n]Su of maximum cardinality while maintaining user-level differentially privacy.

Definition 2.2 (Neighboring Datasets). We say that two input datasets S and S ′ are neighboring if one
can be obtained by removing a single user’s set from the other, i.e., S ′ = S ∪ {(v, Sv)} for some new user v.

2

Definition 2.3 (Differential Privacy [DR14]). A randomized algorithmM is (ε, δ)-differentially private, or
(ε, δ)-DP, if for any two neighboring datasets S and S ′ and for any possible subset of outputs O ⊆ {U : U ⊆
U},

Pr(M(S) ∈ O) ≤ eε · Pr(M(S ′) ∈ O) + δ.

Let Φ : R→ R be the standard Gaussian cumulative density function.

Proposition 2.4 (Gaussian Mechanism [BW18]). Let f : D → Rd be a function with `2 sensitivity ∆2. For
any ε ≥ 0 and δ ∈ [0, 1], the mechanism M(x) = f(x) + Z with Z ∼ N (0, σ2I) is (ε, δ)-DP if and only if

Φ

(
∆2

2σ
− εσ

∆2

)
− eεΦ

(
−∆2

2σ
− εσ

∆2

)
≤ δ.

3 Technical Overview

3.1 Weight and Threshold Meta-Algorithm
Solutions to the private set union problem follow a weight and threshold meta-algorithm. Input is given as a
set of user sets S = {(u, Su)}u∈[n], privacy parameters ε and δ, a maximum degree cap ∆0, and a weighting
algorithm WeightingAlgo. First, each user’s set is randomly subsampled so that the size of each resulting
set is at most ∆0 (the necessity of this step will be further explicated). Then, the WeightingAlgo takes in
the cardinality-capped sets and produces a set of weights over all items in the union. Independent Gaussian
noise with standard deviation σ is added to each coordinate of the weights, and items with weight above a
certain threshold ρ are output.

The privacy of this algorithm depends on certain “sensitivity” properties of the WeightingAlgo as well as
our choice of σ and ρ. Consider any pair of neighboring inputs S and S ′ = S ∪{(v, Sv)}, let U and U ′ be the
corresponding unions, and let w and w′ be the item weights assigned by WeightingAlgo on the two inputs,
respectively. The `2 sensitivity of WeightingAlgo is defined as an upper bound on the Euclidean distance

between w and w′:
√∑

i∈U (w(i)− w′(i))2. Given bounded `2 sensitivity, choosing the scale of noise σ
appropriately for the Gaussian mechanism in Proposition 2.4 ensures that outputting the noised weights on
items in U satisfies

(
ε, δ2
)
-DP. So if we knew U , then the output of the algorithm after thresholding would

be private via post-processing.
However, knowledge of the union U is exactly the problem we want to solve. The challenge is that there

may be items in U ′ which do not appear in U . Let T = U ′ \ U be these “novel” items with t = |T |. As
long as the probability that any of these items are output by the algorithm is at most δ

2 , (ε, δ)-DP will
be maintained. Consider a single item i ∈ T which has zero probability of being output by a weight and
threshold algorithm run on S but is given some weight w′(i) when the WeightingAlgo is run on S ′. The
item will be output only if after adding the Gaussian noise with standard deviation σ, the noised weight
exceeds ρ. The probability that any item in T is output follows from a union bound. In order to union
bound only over finitely many events, we rely on the fact that t ≤ ∆0; this is why the cardinalities must be
capped. The second important sensitivity measure of a WeightingAlgo is the novel `∞ sensitivity, which is
an upper bound, parameterized by t, on the value of w′(i) for i ∈ T . Then, the calculation of ρ to obtain
(ε, δ)-DP is obtained based on the novel `∞ sensitivity, δ, σ, and ∆0.

It is straightforward to show that for the uniform weighting algorithm BasicWeighting in which each
user u contributes 1/

√
|Su| weight to each of the items in Su has `2 sensitivity equal to 1 and novel `∞

sensitivity equal to 1/
√
t.

3.2 Max Degree Adaptive Weighting
Our main result is an adaptive weighting algorithm MaxDegreeAdaptiveWeighting which is amenable to
distributed implementations and has the exact same `2 and novel `∞ sensitivities as BasicWeighting. There-
fore, within the weight and threshold meta-algorithm, both algorithms utilize the same noise σ and threshold
ρ to maintain privacy.

3

Our algorithm takes two additional parameters: a maximum adaptive degree dmax ∈ [1,∆0] and an
adaptive threshold τ = ρ+βσ for a free parameter β ≥ 0. Users with set cardinalities greater than dmax are
set aside and contribute basic uniform weights to their items at the end of the algorithm. The rest of the
users participate in adaptive reweighting. We start from a uniform weighting where each user sends 1/|Su|
weight to each of their items. Items have their weights truncated to τ and any excess weight is sent back
to the users proportional to the amount they contributed. Users then reroute a carefully chosen fraction
(depending on dmax) of this excess weight across their items. Finally, each user adds 1/

√
|Su| − 1/|Su| to

the weight of each of their items. Each of these steps are straightforward to implement within a distributed
framework.

Bounding the sensitivity of this weighting algorithm is significantly more involved than for basic weighting.
Algorithm design choices such as using an initial uniform weighting inversely proportional to cardinality
rather than square root of cardinality, using a maximum adaptive degree, and the fraction of how much
excess weight to reroute are all required for the following theorem.

Theorem 3.1 (Informal). MaxDegreeAdaptiveWeighting has `2 sensitivity equal to 1 and novel `∞ sensi-
tivity equal to 1/

√
t. Thus, using this algorithm within the weight and threshold meta-algorithm maintains

(ε, δ)-DP.

As a direct result of the design of MaxDegreeAdaptiveWeighting, for items with weight less than τ , our
algorithm dominates the basic weighting algorithm in the sense that the weights on those items will only
increase under our algorithm. While weights on overallocated items may decrease due to truncation, this
only marginally affects the probability that these items are output as long as β is large enough, formalized
in the following theorem statement.

Theorem 3.2 (Informal). Let U be the set of items output when using BasicWeighting as the weight-
ing algorithm in the weight and threshold meta-algorithm and let U∗ be the set of items output when
using MaxDegreeAdaptiveWeighting as the weighting algorithm. Then, for items i ∈ U , Pr (i ∈ U∗) ≥
min{Pr (i ∈ U) ,Φ(β)}.

3.3 Experiments
We compare our algorithm to several distributed and sequential baselines. The results for our algorithm in-
clude the algorithm run by itself or as a repalcement for basic weighting in the SIPS framework of iteratively
running a weight and threshold algorithm while removing items output in previous rounds. The base-
lines are basic weighting [KKMN09, GGK+20], SIPS [SDH23], PolicyGaussian [GGK+20], and GreedyUp-
date [CWG22].

Dataset Distributed Sequential
MaxDegreeAdaptive Basic SIPS PolicyGaussian GreedyUpdate

higgs 1933∗ (±5) 1907 (±17) 1907 (±17) 2052 (±10) 2811† (±12)
imdb 3102∗ (±19) 2504 (±7) 3076 (±16) 3578† (±19) 1356 (±2)
reddit 5826∗ (±30) 4062 (±21) 5783 (±30) 7170† (±39) 6364 (±8)
finance 17421∗ (±21) 12677 (±28) 17295 (±31) 20566 (±10) 23563† (±42)
wiki 9848∗ (±34) 7753 (±36) 9795 (±21) 11455† (±21) 4769 (±20)
twitter 13609∗ (±12) 8859 (±22) 13499 (±50) 15907 (±30) 16003† (±28)
amazon 66816∗† (±92) 35256 (±23) 66158 (±59) −− −−
memetracker 531530∗† (±307) 527611 (±384) 527611 (±384) −− −−
clueweb 34914880∗† (±1705) 34603077 (±1618) 34889210 (±1873) −− −−

Table 1: Comparison of size of output of the weight and threshold approach using different weighting
algorithms with ε = 1 and δ = 10−5. The results for all algorithms are the best among a grid search of
parameters each averaged over five trials with standard deviation shown in parentheses. For each dataset,
the best distributed result is denote by (∗) and the best distributed or sequential result is denoted by (†).

4

References
[BW18] Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy:

Analytical calibration and optimal denoising. In International Conference on Machine Learning.
PMLR, 2018.

[CWG22] Ricardo Silva Carvalho, Ke Wang, and Lovedeep Singh Gondara. Incorporating item frequency
for differentially private set union. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2022.

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends R© in Theoretical Computer Science, 9(3–4):211–407, 2014.

[DVGM22] Damien Desfontaines, James Voss, Bryant Gipson, and Chinmoy Mandayam. Differentially
private partition selection. In Proceedings on Privacy Enhancing Technologies, 2022.

[GGK+20] Sivakanth Gopi, Pankaj Gulhane, Janardhan Kulkarni, Judy Hanwen Shen, Milad Shokouhi,
and Sergey Yekhanin. Differentially private set union. In Proceedings of the 37th International
Conference on Machine Learning. PMLR, 2020.

[KKMN09] Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and Alexandros Ntoulas. Releasing
search queries and clicks privately. In Proceedings of the 18th international conference on World
wide web, 2009.

[SDH23] Marika Swanberg, Damien Desfontaines, and Samuel Haney. DP-SIPS: A simpler, more scalable
mechanism for differentially private partition selection. In Proceedings on Privacy Enhancing
Technologies, 2023.

[WZL+20] Royce J Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel Simmons-
Marengo, and Bryant Gipson. Differentially private SQL with bounded user contribution. In
Proceedings on Privacy Enhancing Technologies, 2020.

5

	Introduction
	Related Work

	Preliminaries
	Technical Overview
	Weight and Threshold Meta-Algorithm
	Max Degree Adaptive Weighting
	Experiments

