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Abstract
We consider the graph optimization problems of privately releasing the edges of minimum-weight
spanning trees, perfect matchings, and shortest paths as introduced by Sealfon [PODS 2016]. Given
a public graph topology G = (V, E), together with private edge weights W ∈ RE , we want to
publish an approximate solution to those problems under edge-weight differential privacy. We show
new asymptotically tight additive error bounds for all three problems under the ℓ1 neighboring
relationship. Interestingly, the mechanisms achieving these bounds are the simplest one can imagine:
Construct a private synthetic graph by adding noise to the edge weights and then run a non-private
graph algorithm.

Concretely, we improve Sealfon’s lower bound technique for spanning trees and matchings,
increasing the bound from Ω(n/ε) to Ω((n/ε) min(log(1/δ), log n)) which matches the known upper
bound in the regime δ = n−Ω(1). For shortest paths, we show that adding Laplace noise to weights
and capping the noisy edge weight at zero (so that the new weight is non-negative), yields a synthetic
graph that, with probability 1 − exp(−Ω(n)), preserves all s-t shortest path distances within additive
error O(n/ε). This improves on Sealfon’s O((n log n)/ε) upper bound and matches his lower bound
within a constant factor.

Lastly, we present preliminary work on these problems under the ℓ∞ neighboring relationship.
For instance, we transfer the packing lower bound proposed by Hladík and Tětek [FORC 2025] to
the setting of perfect matching. While our analysis offers tighter bounds in some settings, several
questions remain open both in terms of approximation guarantees and run times.
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1 Introduction

Releasing the edges of shortest path trees (SPT), minimum spanning trees (MST), and
minimum-weight perfect matching (MPM) belong to the most fundamental optimization
problems on graphs. With the additional constraints of differential privacy they have been
studied in the contexts of route planning [26], synthetic data generation [20] or clustering
[24, 17, 15, 1].

In this work, we consider edge-weight differential privacy proposed by Sealfon [26], where
the graph topology with n vertices and m edges itself G = (V, E) is assumed to be publicly
known, but the weight vector W should be kept private. Building on previous works,
we consider both the ℓ1 and ℓ∞ neighborhood relationships, where neighboring graphs
G = (V, E, W) and G′ = (V, E, W′) can differ by either ∥W−W′∥1≤ 1 or ∥W−W′∥∞≤ 1.

mailto:andersaamanda@gmail.com
https://orcid.org/0000-0002-0402-0514
mailto:pagh@di.ku.dk
https://orcid.org/0000-0002-1516-9306
mailto:lure@di.ku.dk
https://orcid.org/0000-0003-2805-9939


2 New Bounds for Private Graph Optimization Problems

While an ℓ1 bound focuses more on the local impact, an ℓ∞ bound occurs naturally if each
of the weights is a conjoint aggregate of some underlying private dataset as it is, for example,
the case for Chow-Liu trees [3].

We distinguish between algorithms that are based on input-perturbation [26] where noise is
added directly to the instance to create a synthetic private instance, and in-place algorithms
that add noise throughout the individual steps of some algorithmic process [24, e.g. PAMST].
Input-perturbation has a number of desirable properties over in-place algorithms. First, they
are often quite simple (e.g., [26] simply adds Laplace noise to each edge weight of a graph).
Second, for in-place algorithms, the privacy/utility trade-off worsens if we have to answer
multiple queries, but multiple queries is not a concern for input-perturbation algorithms since
the synthetic instance is private and any subsequent computations on it does not violate
privacy. Finally, it is often desirable to represent data as a synthetic private data set (e.g., a
synthetic graph) on which one can run many different algorithms.

It is therefore interesting to investigate whether input perturbation algorithms come at
a cost of a worse privacy/utility tradeoff compared to in-place algorithms. Recent work
has demonstrated that this is not always the case [11, 22]. In particular for differentially
private MST under the ℓ∞ neighboring relationship, an algorithm that adds noise to each
edge weight and runs a non-private MST algorithm is in fact optimal for privately releasing
an approximate MST [22].

Optimal bounds for other graph optimization problems are less understood. Besides
releasing a minimum spanning tree, Sealfon [26] also considers privately releasing single
source shortest path trees and a minium-weight perfect matching under the ℓ1 neighboring
relation, and provides a lower bound showing that an error of Ω(n) is necessary for all of
them together with the mentioned upper bound. This leaves a multiplicative gap between
upper and lower bounds of O(log n) for ε-DP and O(

√
log(n) log(1/δ)) for (ε, δ)-DP.

In this work we prove new tight bounds for these problems where it turns out that the
bounds can be achieved by creating a private synthetic graph. Our work is thus guided by
the following question:

Question: How much additive error is needed for privately releasing minimum spanning
trees, perfect matchings and shortest paths? And in which cases is adding noise to the
input weights and running a non-private graph algorithm optimal?

1.1 Our contributions
We make progress answering this question by showing that under the ℓ1 neighboring rela-
tionship, releasing a private synthetic graph (either the same or a small variation of the
one from [26]) gives optimal error guarantees up to constant factors. Our contributions
include the following new tight upper and lower bounds for all three aforementioned graph
optimization problems under the ℓ1 neighboring relationship. A summary of all our new
results together with known bounds appears in Tables 1 and 2.

Improved lower bound technique. We improve a lower bound technique for (ε, δ)-DP
under the ℓ1 neighborhood due to Sealfon. Instead of encoding a random binary vector into
a sparse graph, we encode a random X ∈R [n]d into a dense graph, which lifts the existing
lower bound by a logarithmic factor. This gives tight bounds of Θ(n

ε log n) for sufficiently
small δ = n−Ω(1). In particular, we are proving the following theorem, which with slight
modifications also holds for minimum-weight perfect matchings:

▶ Theorem (Lower bound (informal)). Let G be some graph topology with n vertices and let
ε > 0 and δ = n−Ω(1) be two constants. Now assume B to be some (ε, δ)-differentially private
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Problem Privacy Error Upper Bound Error Lower Bound

MST
ε-DP O(n · log n)A Ω(n · log n)B

(ε, δ)-DP O(n ·
√

log(n) log(1/δ))A Ω(n · min(log(1/δ), log(n)))Theorem 5

SP
ε-DP O(n)Theorem 1 Ω(n)A

(ε, δ)-DP O(n)Theorem 1 Ω(n)A

MWPM
ε-DP O(n · log(n))A Ω(n · log n)Theorem 11

(ε, δ)-DP O(n ·
√

log(n) log(1/δ))A Ω(n · min(log(1/δ), log(n)))Theorem 11

Table 1 Landscape of private graph optimization problems under the ℓ1 neighboring relation:
Minimum Spanning Tree (MST), Single-Source Shortest Path Tree (SSPT) and Minimum-
Weight Perfect Matching (MWPM). All bounds have a multiplicative factor (1/ε), omitted
for the sake of clarity. References: A) Sealfon [26], B) Hladík and Tětek [11]

mechanism respecting the ℓ1 neighboring relation that given G together with some weights
W outputs some approximate minimum-weight spanning tree (or a minimum-weight perfect
matching) T that with probability ≥ 1/2 satisfies |w(T ) − w(T ∗)|≤ α where T ∗ is the real
mst. Then

α = Ω
(

1
ε
· (n ·min(log(1/δ), log(n)))

)
The idea is that by a fundamental property of privacy, we can not release a single

coordinate of Xi with probability more than eε/n + δ, and hence the output of any private
MST-algorithm on the graph that encodes X could be used to reidentify a large part of the
input, contradicting privacy.

Tight bounds for private all pairs shortest path release. The existing upper bounds
for the problems above are obtained by bounding the maximum amount of noise for any
single edge and then union bounding over all edges. In the case of MST, this is in fact tight,
as showed in [11] under pure DP an in this paper under approximate DP (when δ = n−Ω(1)).

For releasing a private graph preserving all shortest path distances, one can either bound
the error of each edge or, more complicated, union bound over all paths in the graphs using
a concentration bound on the sum of the Laplace variables associated with a single path.
Both of these approaches lead to error O(n log(n)/ε). Of particular interest to us is the
latter approach, where we get good error guarantees for a single path and where the additive
approximation directly relates to the number nO(n) of possible paths in the union bound.
One can see that a union bound over 2O(n) sets of edges would lead to a better approximation
guarantee of O(n/ε) and this is exactly our contribution: We prove a combinatorial claim
that there exists a family F = {S1, . . . , S4n} where each Si is a set of edges, such that as long
as the total weight of each set Si does not change by more than O(n/ε) after adding noise,
then the shortest path distances in the synthetic graph are also preserved up to additive error
O(n/ε). By the union bound, this happens with extremely high probability 1− exp(−Ω(n)).
Our result is as follows.

▶ Theorem 1 (Upper bound). Denote with dG(s, t) the distance between s and t in some
graph G. There exists an algorithm, that is ε-DP under the ℓ1 neighborhood relation, which
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on input G releases a private synthetic graph G̃ such that with probability 1− exp(−Ω(n)), it
holds for all s, t ∈ V that |dG(s, t)− dG̃(s, t)|≤ 5n/ε.

Our algorithm has three benefits over the one from [26]: (1) It is slightly simpler,
defining the noisy edge weight w̃(e) = max(0, w(e) + Lap(1/ε)) whereas Sealfon defines
w(e) = max(0, w(e) + Lap(1/ε) + C(log n)/ε)) for a large constant C, (2) it offers optimal
error bounds, and (3) the error probability is exp(−Ω(n)), rather than 1/poly(n).

Additional results. Furthermore, we extend the argument due to Hladík and Tětek,
which is based on a classic packing lower bound, to perfect matchings for ε-DP: Ω((n log n)/ε)
for ℓ1 and Ω((n2 log n)/ε) for ℓ∞. While the ℓ1 result matches exactly the input perturba-
tion approach, we provide a matching upper bound for the latter one using an (inefficient)
application of the exponential mechanism.

Organization. Because of space restrictions, most technical details have been moved
to the appendix. After introducing the necessary notation in Appendix A, we will prove
the results in Appendix B, where we consider the ℓ1 and ℓ∞ neighboring relationship
independently. Finally, in Section 2, we will wrap up and state future research directions.

2 Conclusion and Open Problems

Our main contribution under ℓ1 is improving Sealfon’s lower bound technique and showing
that a union bound on the maximum error is not required for privately releasing shortest
path trees, interestingly removing the separation in utility between pure and approximate DP.
We have given tight bounds for nearly all the problems ℓ1 (Table 1) and started to explore
the ℓ∞ neighboring relation (Table 2) as well. While it seems perturbing the input is the
optimal thing to do under ℓ1, we leave the question of finding tight bounds under ℓ∞ to
further research.

Pagh, Retschmeier, Wu, and Zhang have shown that adding exponential noise to each edge
and only releasing the output of any MST algorithm exactly matches the output distribution
of running a private version of Kruskal’s algorithm. Does a similar technique that is based
on perturbing the input also hold for the other problems? One could combine this with the
textbook 2-approximation algorithm for releasing a maximum matching, but this adds a
constant multiplicative error but matches the lower bound if the weight of the matching is
roughly O(n log n). Furthermore, the authors also used a connection to top-k selection to
prove a lower bound of Ω̃(n3/2) for approximate DP that holds for small δ. Can we make a
similar argument for releasing a perfect matching?

Tight bounds for ℓ∞ under approximate DP are only known for privately releasing an
MST. In this case, one can save a factor of O(

√
n), obtaining an error of Θ̃(n3/2) [22, 24, 20]

by developing more sophisticated private algorithms. Is something similar possible for perfect
matchings and shortest paths? The upper bounds based on the exponential mechanism
presented for ε-DP are tight, but, unlike for the MST problem [11], we don’t know how
to sample from this distribution efficiently. It would be of great interest to find efficient
algorithms as well. Can one privatize standard approaches like Edmond’s Blossom or
Dijkstra’s algorithm [7, 4]?
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8 APPENDIX

We will state all the proofs for the new results here in the appendix.

A Preliminaries

We consider a graph G = (V, E, W), where the set of n vertices V and the set of m edges
E are public and the weight vector W = (w1, · · · , wm) ∈ Rm is private. We use incG(v) to
refer to the set of all incident edges of a vertex v. We denote with G = {(V, E)} the set of all
unweighted graphs (graph topologies) and Gω all weighted ones. For a subset S ⊆ E of edges,
we denote the cost of S as w(S) =

∑
e∈S we.

We write the concatenation of two vectors W = (w1, · · · , wn), W′ = (w′
1, · · · , w′

m) as
W ⊕W′ = (w1, · · · , wn, w′

1, · · · , w′
m), and we quickly write W<i := (w1, · · · , wi−1) and

W>i := (wi+1, · · · , wd). For two vectors W and W′, we define the hamming distance
dH(W, W′) :=

∑n
i=1 1(wi ̸= w′

i) to be the number of coordinates in which they differ. In
case S, S′ are sets, we simply introduce it as dH(S, S′) := |S \ S′|= |S′ \ S|. We use the
operator X ∈R A to denote that the random variable X is drawn uniformly from the set A.

Differential privacy. Throughout this work, we require three different notions of
neighboring datasets.

▶ Definition 2 (Neighboring datasets). For some fixed constants ∆1 and ∆∞, we say that
two vectors W = (w1, · · · , wn) and W′ = (w′

1, · · · , w′
n) are neighboring

under the hamming neighboring relationship (W ∼H W′), if dH(W, W′) ≤ 1,
under the ℓ1 neighboring relationship (W ∼1 W′), if ∥W−W′∥1≤ ∆1, and
under the ℓ∞ neighboring relationship (W ∼∞ W′), if ∥W−W′∥∞≤ ∆∞ .

For simplicity, we assume throughout the paper that ∆∞ = ∆1 = 1, but all bounds can be
generalized by scaling with a factor of ∆1 or ∆∞ respectively.

▶ Definition 3 (Dwork, McSherry, Nissim, and Smith (2006) (ε, δ)-private algorithm). Let
ε, δ > 0, G = (V, E) be a graph, and let S(G) ⊆ 2E be the possible output space. An algorithm
M is called (ε, δ)-differentially private (DP), if for every G = (V, E, W), G′ = (V ′, E′, W′)
such that G ∼ G′ for some neighboring relationship, and all Z ∈ S(G),

Pr[M(G) = Z] ≤ eε · Pr[M(G′) = Z] + δ .

In case of δ = 0, we simply say, that the M is ε-DP.
Although Definition 3 is phrased in the context of privately releasing a set of edges, it

applies to any randomized algorithm M : X → Y, where X is the input space, which is
associated with a symmetric relation ∼ that defines neighboring inputs and Y the output
space.

B Results

We will first prove new tight bounds for the ℓ1 neighboring relationship. All the following
upper bounds are obtained by the simplest thing one can imagine: Adding a controlled
amount of noise to each of the input weight and then release this privatized weight vector.
In Appendix B.4, we will focus on ℓ∞.

Reidentification Lemma Before proving our new bounds, we need a small lemma
that bounds the probability that any (ε, δ)-DP mechanism can leak parts of its input. This
lemma is a generalization of [26, Lemma 5.3] which only holds if X is a binary vector. We
show that the probability that any (ε, δ)-DP mechanism B : X d → X d on some random input
X ∈R [n]d leaks one of its true input bits Xi is at most eε/d + δ.
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▶ Lemma 4. Assuming two integers n, d > 1, if some mechanism B : X d → X d is (ε, δ)-
differentially private under the hamming neighborhood relationship, then for X ∈R X d drawn
uniformly random, we have Pr [B(X)i = Xi] ≤

eε

n
+ δ for each i ∈ [d].

Proof. Let n > 1 be some integer. We index the elements in X by {1, · · · , n} and assume that
X = [n]. For some arbitrarily chosen i ∈ [d], assume a random vector X = X<i⊕Xi⊕X>i ∈R

[n]d. Recall that ⊕ denotes concatenation, and we use the subscript X<i and X>i to split
the vector at index i. Now we can bound the probability that the i’th coordinate of the
output of B(X) outputs part of its input xi:

Pr[B(X)i = Xi] = 1
nd−1

∑
X<i∈[n]i−1

∑
X>i∈[n]d−i

(
Pr

Xi∈R[n]
[B(X<i ⊕Xi ⊕X>i)i = Xi]

)
(1)

≤ n1−d
∑

X<i∈[n]i−1

∑
X>i∈[n]d−i

(
eε Pr

Xi∈R[n]
[B(X<i ⊕ (1)⊕X>i)i = Xi] + δ]

)
(2)

≤ n1−d
∑

X<i∈[n]i−1

∑
X>i∈[n]d−i

(
eε 1

n
+ δ

)
(3)

≤ eε

n
+ δ (4)

In line 2, we use the fact that each Xi is an i.i.d. random variable and in step 3, we use the
privacy guarantees of mechanism B and flip to a neighboring dataset where we explicitly set
Xi = 1 under our hamming neighboring relationship. ◀

B.1 Private Minimum Spanning Trees
We now focus on the problem of privately releasing a minimum(-weight) spanning tree. A
spanning tree is an acyclic subset of edges that connects the graph. For a graph G ∈ G, we
denote T (G) to be the set of all spanning trees. Given a public graph topology G = (V, E)
together with private weights W ∈ RE , we want to release some T ∈ T (G), such that w(T )
is minimized and releasing T satisfies edge-weight differential privacy.

Improving the lower bound for (ε, δ)-DP
Assuming (ε, δ)-DP, we now show that the additive error of Θ((n log n)/ε) one obtains by
adding Gaussian noise to each edge is asymptotically tight for small enough δ ≤ n−Ω(1), thus
closing the remaining gap [26] of a logarithmic factor.

The idea is to encode a random vector X ∈ [n]d into the mst of a dense graph G where
releasing an overly accurate mst by a differentially private mechanism would contradict the
upper bound in Lemma 4. As a by-product, we also get a lower bound for ε-DP, obtained by
taking the limit of δ towards 0. More precisely, we are going to prove the following lower
bound:

▶ Theorem 5 (Lower Bound MST). There exists a graph topology G = (V, E) and a distribution
of weights Dω on weights of E such that for any (ε, δ)-DP protocol B that outputs an
approximate minimum-weight spanning tree T under the ℓ1 neighboring relationship, if the
weights W of the graph are sampled according to Dω, then with probability at least 1/2, we
have

w(T )− w(T ∗) ≥ Ω((n/ε) ·min(log(1/δ)), log n))
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a) Minimum Spanning Tree b) Minimum Perfect Matching

Figure 1 Encoding the vector X = (X1, · · · , Xd) into a minimum-weight spanning tree and a
minimum-weight perfect matching of a dense graph. Each rj represents the integer j, and we set the
weight of the edge from vi to rj to 0, if Xi = j and R else. The corresponding edges are marked in
red. a): b): n′ is later chosen to be roughly αn − α2n ∈ Θ(αn). In the case of matching, we add the
gray dummy nodes that ensure that a perfect matching exists.

where T ∗ is the optimal mst in (G, W).

We now describe how to encode a vector X ∈ [n]d into the mst of a dense graph. A visualiza-
tion of this construction is depicted in Figure 1.

▶ Definition 6 (MST Encoding). Encoding. Let ENCR : [n]d → Gω be the encoding function
that takes some vector X ∈ [n]d and returns a weighted graph G = (V, E, W). The parameter
R ∈ R is used to control the edge weights. We construct a new connected graph G = (V, E, W)
in the following way: First, add a path of length n− 1 with vertices R := {r1, ..., rn} where
each ri encodes some integer i ∈ [n] and set the weight of edge e = {ri, ri+1} to we = 0 for
each i ∈ [n− 1]. For each Xi of X, add a new vertex vi together with new edges e1

i , · · · , en
i

from vi to all rj ∈ R. Set the weights for each j ∈ [n] to w(ej
i ) = 0 if j = Xi and w(ej

i ) = R

otherwise.
Decoding. Let DECG : T → [n]d be a function parameterized by a weighted graph

G ∈ Gω with vertices V = {v1, · · · , vd, r1, · · · , rn}, together with some spanning tree T ∈
T (G). This function decodes the original vector X = (X1, · · · , Xd). We set for all
vi ∈ T : Xi := mine∈incG(vi){w(e)} to be the minimum incident edge of vj ∈ T .

Clearly, for each v ∈ {v1, · · · , vd} there is at least one edge in inc(vi) ∈ T and thus, each
Xi of the decoded vector is defined. Given any mst algorithm A and vector X ∈ [n]d, we
shortly denote ENCDECR(A, X) := DEC(A(ENCR(X)). By the previous construction, we
clearly have X = DEC(A(ENC(X)), if A is deterministic.

We now establish a connection between two vectors that are close in hamming distance
to the ℓ1 sensitivity in the encoded graph.

▶ Lemma 7 (Induced ℓ1). Given two neighboring vectors X ∼H X′ ∈ [n]d under the hamming
neighboring relationship and some real R ∈ R+. Then encoding both vectors into graph
satisfies ∥ENCR(X)− ENCR(X′)∥1≤ 2⌈R⌉

Proof. Observe that for two X ∼H X′ that differ in one coordinate and for any R, we have
ENCR(X) ∼1 G(1) ∼1 · · · ∼1 G(2⌈R⌉) ∼1 ENCR(X′) where each X(i) is the vector obtained
by successively increasing and decreasing one coordinate in G(i−1) by one. ◀

▶ Lemma 8 (Group Privacy). Let X ∼H X′ ∈ [n]d be two vectors neighboring in hamming
distance. Let M be any mechanism that takes a weighted graph G ∈ Gω, outputs an mst
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T ∈ T (G) and preserves (ε, δ)-DP under the ℓ1 neighboring relationship. Fix some R ∈ R+.
Then releasing M(ENC(X, R)) satisfies (2Rε, 2Re2Rεδ)-DP.

Proof. Let M be an (ε, δ)-DP MST algorithm (respecting ∼1) and let G be the graph
returned by ENCR(X) on some input X ∈ [n]d. Then we know by Lemma 7 for all T ∈ T (G):

Pr[M(ENC(X)) = T ] ≤ eε Pr[M(G(1)) = T ] + δ

≤ eε
(

eε Pr[M(G(2)) = T ] + δ
)

+ δ ≤ · · ·

≤ e2Rε (Pr[M(ENC(X′)) = T ]) + 2Re2Rεδ

The last inequality follows because δ
2R−1∑
i=1

eiε ≤ 2Re2Rεδ (compare also [27, Lemma 2.2]). ◀

We are now ready to combine everything and derive a lower bound.

Proof of Theorem 5. Assume that there exists an (ε, δ)-dp algorithm B with respect to
the ℓ1 neighboring relationship that takes a weighted graph and returns the edges of an
approximate mst. For some fixed R ∈ R+, according to Lemma 7 and X ∼H X′ for
X, X′ ∈ [n]n, we have for all possible outputs Y ∈ [n]n:

Pr[ENCDECR(B, X)) = Y] ≤ e2Rε Pr[ENCDECR(B, X′)) = Y] + 2Re2Rεδ

which holds because of Lemma 8 and because decoding is only post-processing. Hence,
ENCDEC satisfies (2Rε, 2Re2Rεδ)-dp. Now assume X ∈R [n]n to be uniformly drawn and
set R = min

(
log n
2cε , log(1/δ)

2cε

)
for some real c. For the sake of contradiction, assume that B

approximates the real mst better than n−1
100 ·R. This would imply that we leak at least 99

100 n

coordinates where ENCDECR(B, X)i = Xi. This contradicts Lemma 4:

Pr[ENCDECR(B, X)i = Xi] ≤
e2Rε

n
+ 2Re2Rεδ

≤ 1
n

exp
(

log(n1/c)
)

+ log(n)
εc

exp
(

log n1/c
)

δ

= n(1−c)/c + log(n)
εc

n1/cδ

For a sufficiently large constant c and considering that δ ≤ n−Ω(1), we directly contradict
Pr[ENCDEC(X, R)i = Xi] ≥ 0.99 and note that we require R ≤ log n

2cε to get any meaningful
probability. Hence, the claim follows. ◀

B.2 Private All-Pairs Approximate Shortest Paths.
Is there any problem with stating the result for directed graphs? In any case we should
be clear about whether it is directed or not. For a weighted graph G = (V, E, w) where
w : E → R≥0, we denote by ℓG : V × V → R≥ the function such that for s, t ∈ V , ℓG(s, t) is
the length of the shortest path between s and t in G. Sealfon [26], described an algorithm
which for a given weighted graph G = (V, E, w), produces a synthetic weighted graph
G̃ = (V, E, w̃) such that with high probability in n, |ℓG(s, t) − ℓG̃(s, t)|= O(n log n

ε ) for all
pairs s, t ∈ V . Moreover, the algorithm is ε-DP under the ℓ1 neighbor relation. Sealfon also
provided a lower bound showing that any ε-DP algorithm which releases an approximate
shortest path must incur additive error Ω(n/ε) even if we only care about a single pair s, t.
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In this section, we show that with a slight modification (and simplification) of Sealfon’s
algorithm, we can release a synthetic graph G̃ which simultaneously approximates all shortest
paths in G within additive error O(n/ε) thus closing the gap between the upper and lower
bound. The algorithm is presented in Algorithm 1.

Algorithm 1

1: Procedure DPAllPairsShortestPath
Input: Graph G = (V, E, w), where w : E → R≥0, privacy parameter ε

2: For e ∈ E, draw Xe ∼ Lap(1/ε)
3: w̃(e) = max(0, w(e) + Xe)
4: Return G̃ = (V, E, w̃)
5: end Procedure

In words, the algorithm adds Laplace noise to each edge but caps the noised weight at 0
which can be seen as a simple post-processing step. It turns out that this capping not only
gives us the desirable property that all edges in the synthetic graph have positive weight, it is
also crucial for our analysis. To demonstrate this, we can consider a complete graph G = Kn

initially with all weights set to 0. If we just add Laplace noise ∼ Lap(1/ε) to each edge, then
with probability ≥ n−0.1, the new weight of an edge w̃(e) = −Ω( log n

ε ) and these events are
independent. Letting Ẽ = {e ∈ E | w̃(e) = −Ω( log n

ε )}, we have that G = (V, Ẽ) has the
distribution of an Erdős-Rényi graph G(n, p) where p ≥ n−0.1. It is easy to check that such
a graph with high probability contains a path of length Ω(n) between each pair of nodes s, t,
so it follows that the shortest path between s, t in G̃ will now have length −Ω( n log n

ε ).
To avoid negative edge weights, Sealfon adds a large constant multiple of log n

ε to each new
edge weight. Union bounding over all edges, it is now easy to see that |dG(s, t)− dG̃(s, t)|=
O(n log n

ε ) for all pairs s, t and this analysis is tight, as seen for example by letting G be a
path of length n. Our main result on Algorithm 1 is as follows.

▶ Theorem 1 (Upper bound). Denote with dG(s, t) the distance between s and t in some
graph G. There exists an algorithm, that is ε-DP under the ℓ1 neighborhood relation, which
on input G releases a private synthetic graph G̃ such that with probability 1− exp(−Ω(n)), it
holds for all s, t ∈ V that |dG(s, t)− dG̃(s, t)|≤ 5n/ε.

We will show that Algorithm 1 implies such an algorithm. This improves over the result
by Sealfon in three ways: (1) the error bound is optimal, (2) the algorithm is simpler, and (3)
the error probability is exponentially small in n. To prove it, we require the following simple
tail bound on sums of Laplace random variables, which follows directly from the analogue
bound in Theorem 5.1 of [13] for sums of exponential random variables.

▶ Lemma 9. Let X1, . . . , Xn ∼ Lap(1/ε) be i.i.d. random variables and X =
∑n

i=1 Xi. Then
for λ > 1,

Pr[|X|≥ (1 + λ)n/ε] ≤ 2
λ

e−n(λ−1−ln(λ)).

Thus, crudely, for λ ≥ 6

Pr[X ≥ (1 + λ)n/ε] ≤ e−nλ/2.

Proof of Theorem 1. The fact that the algorithm is private follows from basic properties
of the Laplace mechanism and post-processing, so we just have to analyze the error of the
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Figure 2 Sorted vertices by distance d(s, vi) in the graph G and a path P from s to t. The red
set of edges is constructed by iteratively removing edges that are covered by another edge, namely the
gray edges. For example are the edges e1, e2, e3, e4 are covered by e. The left-most node of each red
edge is marked in white and the right-most node in black. As we prove in the claim, one can recover
the red edges by matching the i’th white node from the left to the i’th black node from the left for
i = 1, 2, . . . .

algorithm. For this it suffices to consider a fixed pair s, t since we can union bound over the(
n
2
)

choices of such pairs.
Let thus s, t ∈ V be fixed and let P0 be a shortest path in G between s and t. For

any subset of edges S ⊂ E, we let w(S) =
∑

e∈S w(e) and w̃(S) =
∑

e∈S w̃(e). It follows
immediately from Lemma 9 that with probability 1− e−n, |w(P0)− w̃(P0)|≤ 3n/ε. In this
case,

dG̃(s, t) ≤ dG(s, t) + 3n/ε (5)

Our main challenge is therefore to show that for any other path P between s and t, w̃(P )
cannot be much smaller than w(P0). Note that a simple union bound over all nO(n) such
paths using Lemma 9, is insufficient since it only gives an error bound of O( n log n

ε ).
Our idea is to union bound over a more carefully selected family of sets of edges that we

will construct below.

▷ Claim 10 (Cover free set of edges). Let v1, . . . , vn be the nodes of v sorted according to
increasing distance from s in G (breaking ties arbitrarily except that we convene that s = v1).
Let k be such that vk = t. Let P be a simple path in G from s to t, and let EP be the edges
of the path. Then there exists a subset S ⊂ EP such that:
1. For each a = 1, . . . , k − 1 there exists an edge e = (vi, vj) ∈ S with i ≤ a and j ≥ a + 1.
2. If e1 = (vi1 , vj1), . . . , eℓ = (viℓ

, vjℓ
) are the edges of S sorted such that i1 < · · · < iℓ, then

also j1 < · · · < jℓ.
3. w(S) ≥ w(P0) where P0 is the shortest path in G.

Proof of Claim. The construction of S is visualized in Figure 2. Let e = (vi, vj) ∈ E and
e′ = (vi′ , vj′) ∈ E be distinct edges in E with i < j and i′ < j′. We say that e covers e′

if i ≤ i′ and j ≥ j′. We construct the set S as follows: Initially, let S be the edges of P .
Should this just be the edges that go forward with respect to the indexing? While S contains
distinct edges e, e′ where e covers e′, we update S ← S \ {e′}. We claim that once no such
update is possible, the set S satisfies the three requirements of the claim:
1. This clearly holds initially, since P is an s-t path and must at some point cross from

a vertex before or including va to a vertex after or including va+1. Moreover, by the
requirement that a removed edge is always covered by another edge in S, the property is
maintained after each update.

2. Assume for contradiction that this does not hold and let b be minimal such that jb+1 < jb.
Since also ib < ib+1 < jb+1, it follows that e = (ib, jb) covers e′ = (ib+1, jb+1), a
contradiction. Why is ib+1 < jb+1?
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3. Denote by di = d(s, vi). By the triangle inequality, for i < j, d(vi, vj) ≥ dj−di. It follows
that

w(S) =
ℓ∑

r=1
d(vir , vjr ) ≥

ℓ∑
r=1

djr − dir ≥
k−1∑
r=1

(dr+1 − dr) = dk − d1 = d(s, t) = w(P0),

where the final inequality uses the first property of the set S in the claim.
◀

To finish the proof of the claim, let A be the set of s-t paths in G and define the map
f : A → P(E) such that for each path P ∈ A, f(P ) is a subset of the edges of P satisfying
the conditions in the claim. Define the family F = {f(P ) | P ∈ A}. It follows from the
second condition of the claim that to specify the edges of the set S, it suffices to specify the
size ℓ of S as well as the left endpoints vi1 , . . . , viℓ

and right endpoints vj1 , . . . , vjk
of edges

in S. Once this information is revealed, one can reconstruct S = {(vi1 , vj1), . . . , (viℓ
, vjℓ

)}. It
follows that |F|≤ 2n · 2n = 4n where each factor accounts for choosing a subset of the set
of nodes V . Let E be the event that there exists an S ∈ F such that w̃(S) ≤ w(S) − 5n

ε .
By Lemma 9 and a union bound, Pr[E ] ≤ 4ne−2n ≤ e−n/2. We claim that as long as E does
not hold, then w̃(P ) ≥ w(P0)− 5 n

ε for all P ∈ A. To see this, fix P in A and note that

w̃(P ) ≥ w̃(f(P )) ≥ w(f(P ))− 5n

ε
≥ w(P0)− 5n

ε
,

where the first inequality uses that edges edges in G̃ have non-negative edge weights and
f(P ) ⊂ P , the second inequality uses that we assumed Ec, and the third inequality uses the
third property in the claim. Thus

dG̃(s, t) = min
P ∈A

w̃(P ) ≥ w(P0)− 5n

ε
= dG(s, t)− 5n

ε
. (6)

Now, Equations (5) and (6) both hold expect with error probability e−n/2 + e−n. Combining
them and union bounding over all s, t, we obtain the desired result. ◀

B.3 Private Minimum Weight Perfect Matching
We now give new bounds for releasing the edges of a perfect matching. Given a public graph
topology G = (V, E) together with weights W ∈ RE

+, we want to find a subset M ⊆ E where
each vertex v is adjacent to exactly on edge in M and minimizes the weight of w(M). We
denote the set of perfect matchings on some graph G as P(G). With some small modification,
the previous technique in Theorem 5 also holds for privately releasing a minimum-weight
perfect matching and we will prove the following Theorem 11

▶ Theorem 11 (Lower Bound MPM). There exists a graph topology G = (V, E) and distribu-
tion of weights Dω on weights of E such that for any (ε, δ)-DP protocol B that outputs an
approximate mininum-weight perfect matching (mpm) T under the ℓ1 neighboring relation-
ship, if the weights W of the graph are sampled according to Dω, then with probability at
least 1/2, we have

w(T )− w(T ∗) ≥ Ω((n/ε) ·min(log(1/δ)), log n))

where T ∗ is the optimal mpm in (G, W).
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The idea is again to encode a vector X = (X1, · · · , Xn) ∈ [n]n into a perfect matching, this
time on a weighted complete bipartite graph G. Each vertex vi on the right side represents
the values in [n] and will be mapped to the coordinates represented by the left part. Assuming
that no two coordinates have the same value, it is clear that a perfect matching allows to
reconstruct X, but if they have, the previous construction does not work any more. Then,
two coordinates Xi = Xj would be encoded by edges to the same vertex where only one can
be part of the minimum-weight perfect matching. To fix this, the crucial observation is that
with high probability, only a constant fraction of the coordinates will collide with some other
value. Therefore, we cut the dataset X′ = (X1, · · · , Xn′) for some n′ = αn ∈ Θ(n) for some
0 < α < 1 and only encode those coordinates that don’t collide with any other coordinate
which is roughly αn− α2n, still a constant fraction of the dataset with high probability. We
need the following standard lemma about balls and bins.

▶ Lemma 12 (Constant fraction of collisions). Let X1, . . . , Xd be i.i.d. uniformly distributed in
[n] with d = αn for some fixed 0 < α ≤ 1. Then, with probability at least 1− exp(−Ω(α3n)),
the number of indices i for which ∃ j ̸= i such that Xi = Xj is O(α2n).

Proof. Define X̃i = 1{ ∃ j ̸= i : Xj = Xi} and let Y =
∑d

i=1 X̃i. By a union bound,
E[X̃i] ≤

∑
j ̸=i Pr[Xj = Xi] = (d− 1)/n, so that E[Y ] ≤ d(d− 1)/n = α2n− α ≤ α2n. Since

changing a single Xi affects at most two of the X̃i’s, Y is 2-Lipschitz. By McDiarmid’s
inequality [19], for any t > 0, Pr[Y ≥ E[Y ] + t] ≤ exp(−2t2/(4d)). Setting t = E[Y ]
gives Pr[Y ≥ 2E[Y ]] ≤ exp(−E[Y ]2/(2d)) = exp(−Ω(α3n)). Thus, with probability at least
1− exp(−Ω(α3n)), we have Y ≤ 2E[Y ] = O(α2n). ◀

In other words, inside a small constant fraction αn of the dataset X, only a constant
fraction of α2n has collisions with high probability. Therefore, we can get a collision-free
subset of the dataset of size roughly αn − α2n ∈ Θ(n) which is enough for our previous
technique to work in this setting. We refer again to Figure 1 for a visualization.

▶ Definition 13 (Encoding a perfect matching). Encoding. Let ENCR : [n]d → Gω be the
encoding function that takes some vector X ∈ [n]d and returns a weighted graph G = (V, E, W).
The parameter R ∈ R is used to control the edge weights. Create a complete bipartite graph
Kn,n with vertex set V = {l1, · · · , ln, r1, · · · rn} and for all i, j ∈ [n], set the weight of all
edges e = {li, rj} to be we = R if li ̸= Xi and R elsewhere.

Decoding. Let DECG :M→ [n]d be a function parameterized by a weighted graph G ∈ Gω

with vertices V = {l1, · · · , ln, r1, · · · , rn}, together with an perfect matching M ∈ P(G).
Return a vector X = (X1, · · · , Xd) where Xi = j if {li, rj} ∈M .

By the same argument as in Lemma 7, we have for X, X′ ∈ [n]d and X ∼H X′: ∥ENCR −
ENCR∥1≤ 2R and ENCDECR(A, X) = X. Hence, also the following holds:

▶ Lemma 14. Let X ∈ [n]d be some vector, and M be any mechanism that takes a weighted
graph G ∈ Gω, outputs a perfect matching T ∈ P(G) that preserves (ε, δ)-DP under the
ℓ1 neighboring relationship and fix some R ∈ R+. Then releasing M(ENC(X, R)) satisfies
(2Rε, 2Re2Rεδ)-DP.

Proof Sketch of Theorem 11. The proof is essentially the same as in Theorem 5, but
intuitively, we only try to break a constant fraction αn of the dataset rather than the
complete one. This is already enough to derive the same contradiction as before. Therefore,
fix some 0 < α ≤ 1 and draw X ∈R [n]d.
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Problem PN Error Upper Bound Error Lower Bound

MST
ε-DP O(n2 · log n)C,D Ω(n2 · log n)B

(ε, δ)-DP O(n3/2 ·
√

log(n) ·
√

log(1/δ))C,D Ω(n3/2 · log(n))C

SP
ε-DP O(n2 · log(n))Theorem 15,◦ Ω(n)A

(ε, δ)-DP O(n2 ·
√

log(n) ·
√

log(1/δ)A Ω(n)A

MWPM
ε-DP O(n2 · log(n))Theorem 15,◦ Ω(n2 · log n)Theorem 16

(ε, δ)-DP O(n2 ·
√

log(n) ·
√

log(1/δ))A Ω(n · min(log(1/δ), log(n)))Theorem 11

Table 2 Completing the landscape of private graph optimization problems for the ℓ∞ neighboring
relationship. All bounds have a multiplicative factor (1/ε), omitted for the sake of clarity. For
those marked with (◦) an efficient implementation is not known.
References: A) Sealfon [2016], B) Hladík and Tětek [2025], C) Pagh et al. [2024], D) Pinot et al.
[2018]

As before, by Lemma 8, for some fixed R ∈ R+, according to Lemma 7 and X ∼H X′, we
have for all possible outputs Y ∈ [n]n:

Pr[ENCDECR(B, X)) = Y] ≤ e2Rε Pr[ENCDECR(B, X′)) = Y] + 2Re2Rεδ

Now let X̃ = (X1, · · · , Xz) where z ≤ ⌈αn⌉ be some α fraction of X that has no collision and
encode only this part into a graph G. By Lemma 12, we know that X̃ has roughly Θ(n) with
very high probability. We can restore the original (larger) vector by just putting ones into
the positions that have not been encoded. Finally. we can again get a contradiction by the
same inequalities as in Theorem 5. We just need to replace the accuracy by α2n− α ∈ Θ(n)
instead of n− 1 and adjust the constants accordingly ◀

The function is parameterized by R ∈ R, controlling the edge weights. A visualization of
this construction is depicted in Figure 1.

B.4 Results for the ℓ∞ neighborhood
For completeness, we will now provide bounds for the ℓ∞ neighboring relationship. You can
find a status in Table 2. We present new upper bounds obtained by invoking the exponential
mechanism on the set of possible perfect matchings and shortest path trees. Unfortunately,
it is unclear how to sample from them efficiently. Furthermore, we will use a similar lower
bound technique as Hladík and Tětek to show tight bounds for privately releasing a perfect
matching.

B.4.1 Upper bounds for ε-DP
We provide the following upper bound for minimum-weight perfect matching and shortest
paths with a simple application of the exponential mechanism that gives ε-DP. Unfortunately,
contrary to minimum spanning trees [11], we do not know how to sample from this distribution
efficiently.

▶ Theorem 15 (Exponential mechanism). Assuming an ℓ∞ neighboring relationship, there
exists an algorithm B that is ε-DP and releases a matching (shortest path) M with additive
error with high probability is

w(M)− w(M∗) ≤ O ((n log n)/ε)
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where M∗ is the minimum weight perfect matching (shortest paths tree) in G.

Proof sketch. For matching, we can use the exponential mechanism on the set of all possible
perfect matchings, which is O(nn). As the sensitivity of two distinct matchings, can be
up to ∆ = n/2, we sample each matching M ∈ M(G) ∝ exp(ε/2∆) = exp(ε/n), which
is ε-DP. By the utility of the exponential mechanism, with probability exp(−β), we have
w(M)− w(M∗) ≤ 2∆/ε(ln(nn) + β) ∈ O((n/ε) · log(n)).

As there might be O(nn) many edge-disjoint paths from some vertex s to v, we can
(instead of just outputting the edges on the s-t path) apply the exponential mechanism on
the set of spanning trees in G, which size is of the same order of magnitude. The utility
function is just the sum over all the same argument as above applies again. ◀

B.4.2 A packing lower bound for ε-DP
We now show tight error bounds under ε-DP for both the ℓ∞ neighboring relationships using
a similar argument as proposed by Hladík and Tětek. This proof works also for ℓ1 and
matches the bound we gave in Theorem 11, and we will state both cases simultaneously.

The key observation is that similar to the private MST problem, we can again (greedily)
construct an exponential-sized set of dissimilar matchings where each pair has a large hamming
distance of Θ(n). We will show that the additive errors of Θ(n

ε log n) and Θ(n2

ε log n) are
asymptotically optimal under the ℓ1 and ℓ∞ neighboring relationship respectively. For a
given graph G = (V, E, W), we shortly denote the optimal perfect matching as M∗

W.

▶ Theorem 16 (Lower bound ε-DP). Let G be the complete bipartite graph Kn,n with 2n

vertices. Given a set of matching S ⊆ P(G) such that M1, M2 ∈ S with dH(M1, M2) > d for
some d > 0. For some algorithm M that returns a minimum-weight perfect matching of G

under ε-DP, then there exists weights W:

1√
|S|
≥

Pr
[
w(MG(W)) > w(M∗

G) + 1
128 ( n

ε log(n)− 8)
]

(with respect to ℓ1)
Pr

[
w(MG(W)) > w(M∗

G) + 1
64 ( n2

ε log(n)− 8n)
]

(with respect to ℓ∞)

This lower bound also holds for the relaxation, where we don’t require a matching to be
perfect. We denote with LG

W := {M ∈ P(G)| w(M) ≤ w(M∗
W) + µ} the set of perfect

matchings with an additive error at most some µ ∈ R+. We will prove it via a packing lower
bound:

▶ Theorem 17 ([27, 11] Packing argument for Matchings). Fix an unweighted graph G = (V, E)
and an arbitrary neighboring relation ∼ on RE. We are given a collection of weights W ⊆ RE

that all are at a distance at most r ∈ N induced by ∼ from some fixed weight vector
W0 ∈ RE. For a chosen parameter µ such that all sets in LG

W are distinct and any ε-
differentially private mechanism MG : RE →M(G), there exists weights W ∈ W, such that
Pr[MG(W) ∈ LG

W] = Pr [w (MG (W)) ≤ w(M∗
W) + µ] ≤ exp(rε)

|W| .

While [11] used a complete graph for the reduction, the complete bipartite graph we also
used in Theorem 11 is simpler to work with.

Proof of Theorem 16. Let G = (V, E) be the complete bipartite graph Kn,n with 2n vertices
and let S = {S1, · · ·} ⊆ M(G) such that each pair is at least d apart in hamming distance.
For each Si ∈ S, we create a corresponding weight function Wi where we set the weight
of an edge to some value 0, if it is part of this matching and R ∈ R+ otherwise. If we fix
some arbitrary W0, we note that each of the other W ∈ W have ∥W−W0∥1≤ ⌈2R1n⌉ (for
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ℓ1) and ∥W −W0∥∞≤ ⌈R∞⌉ (for ℓ∞) for two R1, R∞ ∈ R+ If we set µ = Rn/2, we can
show that all LG

W are disjoint. Now we can apply Theorem 17. Assuming the ℓ1 neighboring
relationship,we have that for every algorithm M that returns a perfect matching in G, there
exists weights W ∈ W, such that

Pr
[
w (MG (W)) ≤ w(M∗

W) + Rd

2

]
≤


exp ((2Rn + 1)ε)

|S|
under ℓ1

exp ((R + 1)ε)
|S|

under ℓ∞

. (7)

Now we can use the same constants as used by [11] and set R := 1/4 · log|S|/(εn)− 1/(2n)
for for ℓ1 and R := 1/(2ε) log|S|−1. for ℓ∞ which follows by solving the above numerator
for

√
|S|. The claim follows by Lemma 19, which allows us to set d = n/4 and |S|= 2n/4 log n.

◀

▶ Lemma 18 (Volume of a d-ball around perfect matching). For the complete bipartite graph
G, some T ∈ P(G) and some real d > 0, we have |{M ′ ∈ P(G)|dH(M, M ′) ≤ d}|≤ nd

Proof. Let G be the Kn,n with bipartitions L and R and together with a perfect matching
M . We can give a simple combinatorial upper bound by observing that we first pick some
subset S ⊆ L of size d and then we get at most d! many ways to remap the vertices in S.

|{M ′ ∈ P(G)|dH(M, M ′) ≤ d}|≤
(

n

d

)
d! = n!

(n− d)! ≤ nd

◀

▶ Lemma 19 (Large set of dissimilar matchings). Let G be the complete bipartite graph G

with n > 2 vertices on each side. Then we can construct a set S ⊆ P(G) of size 2n/4·log n,
such that dH(M1, M2) ≥ n/4 for all distinct M1, M2 ∈ S.

Proof. For some n > 2, let G be the complete bipartite graph Kn,n. By a similar greedy
argument as in [11], we can generate a set S ⊆ P(G), such that for all distinct M1, M2 ∈ S,
we have dH(M1, M2) > d and |S|≥ n!

nd for some real 0 < d ≤ n. Initialize a set S := ∅
and let R = P(G) be the set of matchings that might still be added to S. Repeat the
following processes until R is nonempty: Pick some M ∈ P(G) and add it into S. Then,
remove all at most nd matchings from R that are closer than d in hamming distance to M

(Lemma 19) and repeat. When this process stops we have |S|≥ n!
nd . Now set d = n/4 and

we get |S|≥ n!
nd ≥ nn/2−d = 2n/4 log n = Θ(en log n) where we used the trivial lower bound of

n!≥ nn/2 which holds for all n ≥ 1. ◀

Previous Work.
Besides the model of edge-weight differential privacy [26], other studied models are edge-level
[10] and node-level [16] privacy. We refer to [21, 18] for more background information on
releasing various graph statistics under differential privacy constraints.

The canonical input-perturbation approach, depicted in Algorithm 2, is to release a
private synthetic graph where noise is being added to each of the edges, where adding noise
from a Laplace distribution gives ε-DP and (ε, δ)-DP is obtained by using noise from a
Gaussian distribution [26]). One way to upper-bound the total error is by union-bounding
the maximum error for each single edge together with some observations on the relation
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Algorithm 2 : Releasing private synthetic graph [26]

1: Procedure InputPerturbation
Input: Graph G = (V, E, W), noise distribution D

2: For e ∈ E, draw Xe ∼ D
3: ŵ(e) = w(e) + Xe

4: Return G̃ = (V, E, W̃)
5: end Procedure

between the edges of a solution in the real and the synthetic graph. We will briefly survey
the state of the problems individually.

Minimum spanning trees. Hladík and Tětek recently showed tight bounds using a
packing argument that holds for ε-DP. Under the ℓ∞ neighboring relationship, releasing a
full synthetic graph becomes too costly as we have to scale the noise with the number of
edges. Therefore, Pinot introduced PAMST, a private version of the Prim-Jarnik [25, 14]
algorithm that gives asymptotically better utility. A private version of Kruskal’s algorithm
has implicitly been used in the context of synthetic data generation [20].

Surprisingly, Pagh et al. recently showed that input-perturbation is more powerful than
initially suspected. They showed that privacy will be amplified if we only release the output
of an MST algorithm computed on a synthetic graph that is not fully private by itself. They
also showed a tighter lower bound for ℓ∞, leaving a small gap of Ω(

√
log n ·

√
log(1/δ)).

Minimum-weight perfect matchings. Know results [12, 5] used a slightly different
model than used in this work. We are unaware of any other works than [26] for our setting.

Shortest paths. Releasing a shortest s − t path has mostly been studied from the
perspective of privately releasing all pairwise shortest paths distances [8, 9, 2]. Again, we are
unaware of works other than [26] that use the setting in this paper.
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