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Abstract

We propose a novel adaptation of the Decentral-
ized Power Method (D-PM) to perform Differ-
entially Private (DP) Principal Component Anal-
ysis (PCA) in networked settings. Unlike typi-
cal decentralized PCA approaches—where each
agent can access the full n-dimensional sample
space—we focus on the more challenging case
where each agent observes only a subset of the
dimensions. To address this complexity, we in-
troduce a Decentralized (ϵ, δ)-DP Power Method
(D-DP-PM) that ensures individual data privacy
while collaboratively estimating the global eigen-
vectors across the network. We prove that our
method satisfies the prescribed (ϵ, δ)-DP guaran-
tee and derive a corresponding bound on δ. Addi-
tionally, we establish the convergence rate of our
approach, including the impact of network topol-
ogy. Experiments on a synthetic dataset confirm
the efficacy of our method.

1. Introduction
The goal of computing the singular vectors of decentralized
data is a critical data analysis task used in both research and
commercial settings. For example, the eigen vector estima-
tion of the covariance matrix of a dataset X ∈ Rn×d can be
used for learning distance embeddings or for dimensional-
ity reduction. However, as the big data paradigm becomes
more popular there is a growing need for incorporating pri-
vacy into data analysis pipelines. While distributed PCA
methods (Scaglione et al., 2008; Wang et al., 2023; Chai
et al., 2022; Froelicher et al., 2023; Grammenos et al., 2020;
Qu et al., 2002; Liang et al., 2014) provide some degree
of privacy, Differentially Privacy (DP) is required to make
formal privacy guarantees. In this paper we focus on the De-
centralized Power Method (D-PM) (Scaglione et al., 2008)
and its adaptions to the DP setting.
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In this work, we aim to estimate the eigenvectors of the
covariance matrix XX⊤ in a decentralized manner (or left
singular vectors of X), given a data matrix X ∈ Rn×d.
Here, n represents the number of data samples, each of
dimension d. We assume that our dataset is partitioned row-
wise among m agents in a network. Specifically, each agent
i holds a data matrix Xi ∈ Rni×d,

∑m
i=1 ni = n, such that:

X =

X1

...
Xm

 . (1)

This is a different set up from the prior art which assumes
two different scenarios. The most common one distributes
the data column wise, i.e each agent has Xi ∈ Rn×di where

X =
[
X1 . . . Xm

]
. (2)

A second case considered in the literature assume each agent
has a portion of XX⊤, denoted Ai where

XX⊤ =

m∑
i=1

Ai. (3)

This is not possible in our case, since the agents only
have have access to the block diagonal elements of XX⊤

(XiX
⊤
i ). Below we describe the threat model given our

setup.
Threat Model: We assume that each agent behaves
collaboratively—it will not inject false data, ignore received
information, collude, etc.—but remains curious and thus
potentially attempts to infer the data held by other agents.
That is, each agent should be prevented from reconstructing
what specific data were in the batch used for the principal
components computation. Given that our setup assumes
no trustworthy centralized node it falls under the Local
Differentially Privacy (LDP) setting. That is, we are
interested in providing guarantees on the privacy leakage
of node i with respect to (w.r.t) node j. Furthermore, we
define adjacent datasets by a single row change such that
∥X −X ′∥ ≤ 1.

Prior work by (Balcan et al., 2017; Hardt & Price, 2014;
Balcan et al., 2016) has established analytical convergence
guarantees for the Noisy Power Method, thereby provid-
ing foundational convergence results for the Differentially
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Private Power Method (DP-PM). More recently (Nicolas
et al., 2024; Guo et al., 2021; Wang & Xu, 2020) have
proposed federated approaches for the DP-PM algorithm.
(Nicolas et al., 2024; Balcan et al., 2017; Guo et al., 2021)
assume a data partition matching (3) while (Qu et al., 2002;
Grammenos et al., 2020; Wang & Chang, 2018; Ge et al.,
2018) utilize a data partitioning consistent with (2). Inter-
estingly, none of the above papers have developed a fully
decentralized 1 DP-PM, and thus the DP-PM method has
not been extended to multi-agent networks. To the best of
our knowledge we are the first to propose the D-DP-PM
algorithm in the multi-agent network setting and provide
convergence and DP guarantees. Additionally, to the best
of our knowledge, we are the first to consider the data parti-
tioning given by (1) for the D-DP-PM algorithm. Below are
our contributions.

Contributions:

• We are the first in proposing a D-DP-PM algorithm for
estimating sample covariance eigen vectors when the data
matrix is split according to (1).

• We analyze the algorithm providing a proof for: 1) the
DP guarantee along with an asymptotic DP bound; 2) the
convergence of the proposed D-DP-PM algorithm over
connected communication topologies.

2. Proposed Method
At a high level, our algorithm is a noisy variant of the D-
PM algorithm (Scaglione et al., 2008). In this section we
provide the complete algorithm and describe the key steps.
Centralized Power Iteration: Let us consider only the
principal eigen vector, i.e. l = 1, and omit the index. The
(centralized) PM is an iterative algorithm that computes
the dominant eigenvector of a matrix using the following
update:

q(t+1) =
XX⊤q(t)∥∥XX⊤q(t)

∥∥ , (4)

where q(0) is a random vector. Running (4) for T iterations
generates a vector that approximates the principal eigen vec-
tor XX⊤. In order to generate the whole eigen subspace,
we remove the contribution of q(T ) from the XX⊤ by

(XX⊤)new = XX⊤ − λ1qq
⊤, (5)

and repeat (4).
Decentralized Power Iteration: The centralized power
method was extended to the decentralized setting (Scaglione
et al., 2008) where the observation was made that inner-
products could be computed in a distributed manner using
the average consensus protocol. That is, for mixing matrix

1Prior art assumes there is a central processing node.

W and for consensus steps c, the inner product at node i is:

X⊤q +O (λc
2 (W )) = m

m∑
j=1

(W c)ij X
⊤
j qj . (6)

The upshot of (6) is that, via consensus aggregation, agents
can approximate the projection over the other agents data.
Our contributions lie in the incorporation of a DP mecha-
nism into the network updates and the analysis of the result-
ing D-DP-PM algorithm.

Decentralized DP-Power Iteration: Notice that in the de-
centralized PM each agent only shares the projected vector
zi := X⊤

i q
(t)
i (step 6 Algorithm 1) via consensus. Cru-

cially, since each agent communicates only its own segment
of the projected eigenvector, no agent ever tracks the full vec-
tor q. This fact, together with the independent and random
initialization of each agent’s vector q(0)

i , inherently provides
additional privacy that we deliberately utilize. Moreover, at
each iteration of the algorithm we add p(t) ∼ N (

(
0, σ2

pId
)

prior to the consensus step (step 5 Algorithm 1). Finally,
rather than normalizing q(t+1) by its norm, we use a pre-
determined scalar α, thus preserving Gaussianity. This is
critical for the tractability of the analysis since it allows
us to stack the data releases of every agent into a single
multi-variate Gaussian observation. To complete the eigen-
vector computation we must normalize each qi by the total
norm q and therefore must add noise u ∼ N (0, σ2

uIni
)

according to the sensitivity of q (step 9 Algorithm 1). Fi-
nally, in order to compute the remaining eigenvectors we
sequentially remove the contribution from the dominant
eigen vector and repeat the algorithm. Concretely, where
z
(t+1/2)
i := m

∑n
j (W

c)ij z
(t)
j (step 6 Algorithm 1), each

agent updates its local dataset by

Xi = Xi − ql−1z
(T−1/2)
i

which projects the data orthogonally to the directions of the
leading singular vector. See Algorithm 1 for the full details.

3. Analysis
We introduce the following assumptions:

Assumption 1 (The mixing matrix). The mixing matrix W
satisfies the following conditions:

i. wij > 0 if and only if there exists an edge between nodes
i and j.

ii. The underlying graph is undirected.
iii. W is doubly-stochastic.
iv. The agent network, G({1, · · · ,m}, E) is strongly con-

nected.

A consequence of Assumption 1 is that 0 ≤ λ2(W ) < 1.
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Algorithm 1 D-DP-PM

1: Init: Xi, rank r, c consensus steps, scaling factor
α, q

(0)
il ∼ N

(
0, σ2

qI
)
, p(t) ∼ N

(
0, σ2

pI
)
, u ∼

N
(
0, σ2

uI
)

2: for l ∈ [1, r] do
3: Xi = Xi − ql−1z

(T−1/2)

4: for t < T − 1 do
5: z

(t)
i = X⊤

i q
(t)
i,l + p(t)

6: z
(t+1/2)
i = m

∑n
j (W

c)ij z
(t)
j

7: q
(t+1)
il = αXiz

(t+1/2)
i

8: for t = T do
9: q

(T−1)
il = q

(T−1)
il + u

10: Share q
(T−1)
il , Receive q

(T−1)
jl

11: q
(T )
il =

q
(T )−1
il∥∥∥q(T−1)
l

∥∥∥
12: return Û (r) =

[
q
(T )
1 . . . q

(T )
r

]

Next, we define

ξ := (W c ⊗ Id)Diag⊤ (X)−
(
11⊤

m
⊗ Id

)
Diag⊤ (X) ,

(7)

where

Diag (X) :=

X1 . . . 0
...

. . .
...

0 . . . Xm

 .

Using this definition of ξ we have the following assumption.

Assumption 2. We assume that α is chosen such that

ρ := α
∥∥XX⊤ +mDiag(X)ξ

∥∥ < 1. (8)

3.1. Differential Privacy

In this section, we introduce Theorem 1, which provides
conditions on the algorithm’s parameters to ensure it satis-
fies (ϵ, δ)-DP. The proof of the bound relies on a Chernoff
bound and the composition theorems for differential privacy.
The key fact, which we noted in the previous section, is that
the initial noise distribution and the release of each zi are
both Gaussian. That is,

Z(T−1) :=
[
z
(1)
1 . . . z

(1)
m z

(2)
1 . . . z

(T−1)
m

]⊤
,

(9)

is a Gaussian matrix that contains the releases of the entire
network for all iterations. Let Z(T−1)

i refer to agent i’s

releases. Then we define

Bi : = E
[
Z

(T−1)
i

]
(10)

Ci : = E

[(
Z

(T−1)
i −Bi

)(
Z

(T−1)
i −Bi

)⊤
]
, (11)

as the mean and covariance matrix at agent i after T − 1
iterations. We denote the adjacent means and covariances
by B′

i and C ′
i. Furthermore, where ∆q is the sensitiv-

ity of q as defined in (Nicolas et al., 2024), we define
σu := ∆q

√
2 ln(1.25/δ1)ϵ

−1
1 where σ2

u is the variance
of the noise distribution in step 9 Alg. 1. Then we have the
following theorem.

Theorem 1. Let UiΓiU
⊤
i = C

1/2
i C ′

i
−1

Ci and µi =

U⊤
i C

−1/2
i (Bi −B′

i). Then ∀s > max (1, λ1 (Γi)) the
first T − 1 steps of Algorithm 1, for agent i are (ϵi, δi)-DP
with the following bound

δi ≤

(s− 1)
d
2

det (Γi)
1

2(s−1)
√
det (sI − Γi)

× exp

{
− ϵi
s− 1

+
s

2(s− 1)

(
µ⊤

i (sI − Γi)
−1

Γiµi

)}
.

(12)

Therefore, the entire algorithm is (ϵ, δ)−DP where ϵ =
maxi (ϵi) + ϵ1 and δ = maxi (δi) + δ1.

However, to understand the asymptotic behavior we intro-
duce the following corollary.

Corollary 1 (Corollary 2 of (Ramakrishna et al., 2023)).
Assuming that s ≫ max (1, λ1(Γi)), then

δi ≤ exp
{
1/2s

(
µ⊤

i Γiµi − ln detΓi

)}
e−

ϵ
s . (13)

The proof for Theorem 1 and Corollary 1 can be found in
(Ramakrishna et al., 2023), however, we provide an explicit
formulation of the Gaussian Z(T−1) in terms of the parame-
ters, α ,W , and X , which can be found in Appendix A.2.1.
Corollary 1 indicates that δi increases monotonically with
respect to an increase in µ⊤

i Γiµi − ln detΓi. On the other
hand, from Theorem 1 we see that the choice of (ϵ1) and
δ1 is critical. Since we are able to roll up all the T − 1
iterations into maxi(ϵi, δi), and since the last iteration a is
noisy release of q(T )

i , a higher accuracy can be achieved by
giving majority of the ϵ to ϵ1.

3.2. Convergence

Theorem 2. Let X ∈ Rn×d be the global data matrix
and suppose α and W are chosen to satisfy Assumption
2. Let λ1 > . . . > λn be the eigen values of XX⊤, v the
principal eigen vector, and let q denote the principal eigen
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vector from Algorithm 1. Furthermore, for some sufficiently
large constant κ > 0, let

η = O
(

1

κn

)
. (14)

Then if

T = Θ

(
λ1

λ1 − λ2
log

(
κn

η

))
, (15)

we have, with probability 1− κ−Ω(1) − e−Ω(n) that∥∥v − qq⊤v
∥∥ ≤ η. (16)

Then, let the privacy parameters ϵ, δ, where ϵ > 0, δ ∈
(0, 1), and δ ≤ exp

(
− ϵ

4

)
Finally, by letting β = 1 + α

1−ρ ,
we have

η = O


(
maxk,t |q(t)

k |β + ρσq

)√
nT log(T ) log(1/δ)

ϵ(λ1 − λ2)


(17)

The proof of Theorem 2 is based on the works by (Nicolas
et al., 2024; Balcan et al., 2016; Hardt & Price, 2014) and
the full proof is in Appendix A.1. We highlight that our
proof enhances the existing state of the art as it formally
incorporates consensus aggregation errors and it does not
require unit norm assumption on q(t).

Theorem 2 indicates that an appropriate choice for α is
required for a sufficiently tight convergence, however, there
is a trade-off with the number of iterations T , and the choice
is dependent on the error induced by the mixing matrix. The
appropriate choice for α is therefore

α ≈ 1

∥XX⊤∥+ b
, (18)

where b is a positive constant that keeps ρ from growing too
large. Additionally Theorem 2 indicates that a smaller σq

will lead to tighter convergence, but this must be balanced
with the desired T and the privacy constraints.

4. Numerical Results
For a numerical evaluation we generate a graph via a stochas-
tic block model with 400 nodes and define d = 3 graph sig-
nals {g[d]}3d=1 through the diffusion-dynamic graph filter
in (Ramakrishna et al., 2020):

g[d] = (I+ 0.1S)−1x[t] + n[d],∀d, (19)

where S is the graph Laplacian matrix, x[t] is the excitation
signal with i.i.d. entries uniformly distributed over [−1, 1],
and n[t] representing the Gaussian measurement noise with

Figure 1. The error curves of the proposed D-DP-PM algorithm
and the naive LDP approach. We report the projection error,∥∥v − qq⊤v

∥∥, as a function of ϵ.

entries drawn from N (0, 0.01). We then randomly split this
dataset among 4 agents, Xi ∈ R100×3 and assume that the
agent network forms a ring topology. We then run Algorithm
1 over varying ϵ. For the high privacy experiments, ϵ ≤ 5,
we set δ ≤ .26 and for 5 < ϵ ≤ 10, we set δ = .1 while
for all the other experiments δ < .011. We compare our
results to the naive LDP method. In this setup, each agent
individually adds noise to its dataset and then shares the
noisy matrix Xi with all other agents. Subsequently, each
agent performs SVD on these noisy datasets to produce the
eigenvector estimate q. The results are presented in Fig
1. The experiment indicates that in the moderate privacy
setting (ϵ ∈ [10, 50]) our method on average reduces the
error by .16. Concretely our method can achieve an accuracy
of .8 with ϵ ≤ 50 while the LDP method requires ϵ > 100.

5. Conclusion
In this paper we present the D-DP-PM algorithm, the first
Decentralized DP power method for estimating the sample
eigen space when datasets are split row wise. Algorithm
1 leverages the fact that each agent only needs to share
its local embedding of the current eigen vector z(t)

i , and
that there is initial randomness, and thus privacy, from q0

i .
Using these two facts, we analytically prove that Algorithm
1 satisfies the DP constraint, prove that our algorithm, in the
multi-agent setting, converges to the true eigen vector, and
provide a numerical validation on a stochastic block model.
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A. Appendix
A.1. Convergence

Recall that the consensus algorithm for an arbitrary input vector x ∈ Rn and for a doubly stochastic mixing matrix W We

have the following properties. Let x̄ :=
11⊤

n
x and e := x− x̄, then by the fact that W rx̄ = x̄

∥W rx− x̄∥ = ∥W r (x̄− e)− x̄∥ = ∥W re∥ . (20)

And since

1⊤e = x̄− x̄ = 0, (21)

we know the dominant eigen vector of W does not contribute anything so

∥W re∥ ≤ λr
2(W ) ∥x− x̄∥ (22)

=⇒ O (∥W rx− x̄∥) = O (λr
2(W )) . (23)

Let

Diag (Xi) :=

X1 . . . 0
...

. . .
...

0 . . . Xm

 . (24)

Now recall that our update operation, over the entire network is performed by

q(t+1) = αDiag (X)
(
m (W r ⊗ Id)Diag⊤ (X) q(t) + p(t)

)
. (25)

However if we let ξ := (W c ⊗ Id)Diag⊤ (X)−
(
11⊤

m
⊗ Id

)
Diag⊤ (X), we then have

q(t+1) = α
(
XX⊤q(t) +Diag (X)

(
mξq(t) + p(t)

))
. (26)

Notice that if we let p̂(t) := ξq(t) + p(t), then

g(t) := Diag(X)p̂(t) ∼ N
(
0,m2 Diag(X)ξΣq(t)ξ⊤ Diag(X⊤) + σ2

p Diag
(
XX⊤)) . (27)

Therefore our algorithm is equivalent to the centralized power method given by

q(t+1) = α
(
XX⊤q(t) + g(t)

)
. (28)

Notice that since q(0) ∼ N
(
0, σ2

qIn
)

we can say that with probability 1− e−Ω(n) that
∥∥q(0)

∥∥ ≲ σq
√
n Furthermore we

know that, because p(t) ∼ N (0, σ2
pI) that with probability p = 99/100 that

max
∀t

∥∥∥p(t)
∥∥∥ ≤ σp

√
n log(T ). (29)

Before continuing the analysis we define q(t) in terms of q(0) via

q(t) = αt(XX⊤ +mDiag(X)ξ)tq(0) +

t−1∑
k=0

αt−1−k
(
XX⊤ +mDiag(X)ξ

)t−1−k
αDiag(X)p(t). (30)

The goal is to with, high probability, bound
∥∥q(t)

∥∥, we start by splitting the term into the homogeneous and non homogeneous
part. Then we have that∥∥∥α(t)

(
XX⊤ +mDiag(X)ξ

)(t)
q(0)

∥∥∥ ≤
∥∥αt

(
XX⊤ +mDiag(X)ξ

)∥∥ ∥∥q0
∥∥ (31)

≲
∥∥α (

XX⊤ +mDiag(X)ξ
)∥∥σq

√
n (32)

(by Assumption 2) = ρσq

√
n. (33)
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Now we bound the non-homogeneous term.∥∥∥∥∥
t−1∑
k=0

αt−1−k
(
XX⊤ +mDiag(X)ξ

)t−1−k
αDiag(X)p(t)

∥∥∥∥∥ (34)

≤
t−1∑
k=0

∥∥α (
XX⊤ +mDiag(X)ξ

)∥∥t−1−k
∥∥∥αp(k)

∥∥∥ . (35)

By Assumption 2 we know that
∥∥α (

XX⊤ +mDiag(X)ξ
)∥∥τ has a geometric decay with τ . Therefore

t−1∑
k=0

∥∥α (
XX⊤ +mDiag(X)ξ

)∥∥k ≤ 1

1− ∥α (XX⊤ +mDiag(X)ξ)∥
≤ 1

1− ρ
. (36)

Which implies that∥∥∥∥∥
t−1∑
k=0

αt−1−k
(
XX⊤ +mDiag(X)ξ

)t−1−k
αDiag(X)p(t)

∥∥∥∥∥ ≤ α

1− ρ
max
k<t

{∥∥∥p(t)
∥∥∥} (37)

≤ α

1− ρ
σp

√
n log(T ). (38)

Combing this all together we can therefore say with probability 1− eΩ(n) − 1
100

max
∀t

∥∥∥q(t)
∥∥∥ ≲

(
ρσq +

ασp

1− ρ

)√
n log(T ) (39)

Therefore, and by the fact that g(t) is a Gaussian vector, we can utilize (Hardt & Price, 2014) and we have that with
probability 1− eΩ(n) − 1

100

max
∀t

∥∥∥g(t)
∥∥∥ ≤ σp

√
n log(T ) +

(
ρ+

ασp

1− ρ

)√
n log(T ) ≤

(
σp

(
1 +

ασp

1− ρ

)
+ ρ

)√
n log(T ), (40)

which implies that, for principal eigen vector v

max
∀t

∥∥∥v⊤g(t)
∥∥∥ ≤

(
σp

(
1 +

ασp

1− ρ

)
+ ρσq

)√
n log(T ). (41)

We define the order of η, for some sufficiently large κ > 0, by

η := O
(

1

log(κn)

)
. (42)

If we can then show that (by (Balcan et al., 2016)), ∀t∥∥∥g(t)
∥∥∥ = O (η(λ1 − λ2)) (43)

and∥∥v⊤g
∥∥ = O

(
η(λ1 − λ2)

1

κ
√
n

)
, (44)

and if we let T be defined by

T := Θ

(
λ1

λ1 − λ2
log

(
κn

η

))
. (45)

then with probability 1− κ−Ω(1) − e−Ω(n) we have that∥∥v − qq⊤v
∥∥ ≤ η. (46)
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Notice that we can satisfy (43) and (44) by setting

η =

(
σp

(
1 +

α

1− ρ

)
+ ρσq

)√
n log(T )

λ1 − λ2
, (47)

which therefore gives us that

∥∥v − qq⊤v
∥∥ ≤

(
maxk,t |q(t)

k |
(
1 +

α

1− ρ

)
+ ρσq

)√
nT log(T ) log(1/δ)

ϵ(λ1 − λ2)
(48)

A.2. DP

A.2.1. CHERNOFF BOUND

Recall that Xi ∈ Rni×d where
∑m

i=1 ni = n. For iteration t of Algorithm 1 every agent releases z(t)
i ∈ Rd = X⊤

i q
(t)
i +pi

where pi ∼ N (0,Σp). If we concatenate all the releases we have

z(t) ∈ Rmd :=


X⊤

1 q
(t)
1

...
X⊤

mq
(t)
m

 = Diag(X⊤
i )q(t) where Diag(X⊤

i ) :=

X
⊤
1 . . . 0
...

. . .
...

0 . . . X⊤
m

 . (49)

Using the above we can rewrite z(t) in terms of the mixing matrix W and the previous vector z(t). Let α denote the per
iteration normalization constant. Additionally for readability we define

Ψ(r) := Diag(Xi)
(
(αm)W (r) ⊗ Id

)
. (50)

Then we have that

z(t) = Diag(X⊤
i )q(t) + p(t) (51)

q(t+1) = Ψ(r)z(t). (52)

Furthermore we define

Z(T ) :=

z(1)

...
z(T )

 ∈ RTmd. (53)

Now we want to describe the distribution of this stacked Zt vector. First notice that

q(t+1) = Ψ(r) Diag(X⊤
i )q(t) +Ψ(r)p(t) (54)

and (55)

z(t+1) = Diag
(
X⊤) q(t+1) + p(t+1) (56)

=⇒ (57)

z(t+1) = Diag
(
X⊤

i

)
Ψ(r) Diag(X⊤

i )q(t) +Diag(X⊤
i )Ψ(r)p(t) + p(t+1). (58)

If we continue the recursion and write z(t) in terms of q(0) we have

z(t) = Diag
(
X⊤

i

) (
Ψ(r) Diag

(
X⊤

i

))t−1

q(0) +

t−1∑
τ=1

Diag
(
X⊤

i

) (
Ψ(r) Diag

(
X⊤

i

))t−1−τ

Ψ(r)p(τ) + p(t). (59)
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Therefore, if we define L ∈ RmdT×mdT as a lower triangular matrix and M ∈ R(dmT×n) as the stacked matrix of each
Diag

(
X⊤

i

) (
Ψ(r) Diag

(
X⊤

i

))t−1
term, we get the following equation

Z(T ) = Mq(0) +L

p(1)

...
p(T )

 . (60)

For clarity the t− th block row of M is Diag
(
X⊤

i

) (
Ψ(r) Diag

(
X⊤

i

))t−1
. For the L matrix we define the t− th block

row as

[L]t,τ =


Diag

(
X⊤

i

) (
Ψ(r) Diag

(
X⊤

i

))t−1−τ
Ψ(r), if 1 ≤ τ < t,

Imd, if τ = t,

0, if τ > t

(61)

which has the following structure

L =


I 0 0 · · · 0

Diag
(
X⊤

i

)
Ψ(r) I 0 · · · 0

Diag
(
X⊤

i

) (
Ψ(r) Diag

(
X⊤

i

))
Ψ(r) Diag

(
X⊤

i

)
Ψ(r) I · · · 0

...
...

...
. . .

...
Diag

(
X⊤

i

) (
Ψ(r) Diag

(
X⊤

i

))T−2
Ψ(r) Diag

(
X⊤

i

) (
Ψ(r) Diag

(
X⊤

i

))T−3
Ψ(r) · · · Diag

(
X⊤

i

)
Ψ(r) I

 .

(62)

Furthermore, we let P ∈ RTmd be the stacked Guassian vector, then we have that

P ∼ N (0, IT ⊗ Σp) , (63)

which implies that

Z(T )|q0 ∼ N (Mq(0),L(IT ⊗ Σp)L
⊤). (64)

However, because we eventually want to look at the privacy leakage of node j w.r.t node i (node i’s ability to infer information
about node j) we need to separate Z

(T )
i . We accomplish this by replacing the Diag

(
X⊤

i

)
with Ti := X⊤

i

(
e⊤i ⊗ Ini

)
.

That is, the t−th row of M becomes [Mi]t := Ti

(
Ψ(r) Diag

(
X⊤

i

))t−1
with Mi ∈ RdT .

Furthermore we replace L with Li ∈ RTd×Tmd where the t− th row block of Li is defined by

[Li]t,τ =


Ti

(
Ψ(r) Diag

(
X⊤

i

))t−1−τ
Ψ(r), if 1 ≤ τ < t,

e⊤i ⊗ Id, if τ = t,

0, if τ > t

. (65)

Therefore the distribution at agent i for the entire duration of the algorithm is

Z
(T )
i ∼ N

(
0,MiΣqM

⊤
i +Li (IT ⊗ Σp)L

⊤
i

)
. (66)

Now we need to split this distribution into what node i knows and what node i receives from its neighbors. Let Mu
i denote

the part of M that interacts with q
(0)
i and M−u

i as the part that interacts with the rest of the q(0). Formally Mu
i is the

i− th column vector of Mi and M−u
i contains the other columns. We do a similar notation for Li letting Lu

i denote the
part interacting with each p

(t)
i and L−u

i for the remaining p
(t)
j ̸=i. Formally, Lu

i is the positive integer multiples of the i− th

columns of Li with L−u
i containing the leftovers. Therefore we can write

Z
(T )
i ∼ N

(
0,Mu

i [Σq0 ]i (M
u
i )

⊤
+M−u

i [Σq0 ]j ̸=i

(
M−u

i

)⊤
+Lu

i (IT ⊗ [Σp]i)
(
L−u

i

)⊤
+L−u

i (IT ⊗ [Σp]j ̸=i)
(
L−u

i

)⊤)
,

(67)
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and therefore

Z(T )|q(0)
i ,p

(0)
i , . . .p

(T )
i ∼ N

(
Mu

i q
(0)
i +Lu

i P , M−u
i [Σq0 ]j ̸=i

(
M−u

i

)⊤
+L−u

i (IT ⊗ [Σp]j ̸=i)
(
L−u

i

)⊤)
. (68)

Let Ai := M−u
i [Σq0 ]j ̸=i

(
M−u

i

)⊤
+L−u

i (IT ⊗ [Σp]j ̸=i)
(
L−u

i

)⊤
and let A′

i denote the covariance matrices by replacing
Xj with X ′

j where Xj and X ′
j differ by a single data sample. Similarly we define Bi := Mu

i q
(0)
i +Lu

i P . By applying
the Chernoff bound and letting

UΓU⊤ = (Ai)
1/2

(A′
i)

−1
(Ai)

1/2

µ = U⊤ (Ai)
−1/2

(
(Bi

′ −Bi)q
(0)
i

)
(69)

we have by (Ramakrishna et al., 2023)

Pr (LXX′(z) > ϵ) ≤ exp

(
1

2s

[
µ⊤Γµ− ln |Γ|

])
exp(−ϵ/s). (70)

To prove Theorem 1 we apply (70) with the DP-composition method from (Dwork et al., 2014).
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