
Towards Vertically Distributed Differentially Private
Synthetic Data Generation

Yucheng Fu, Tiaoyao Gu†, Elaine Shi†, Tianhao Wang
University of Virginia, †Carnegie Mellon University

Abstract
Ensuring individuals’ privacy while allowing for col-

laborative data sharing is crucial for organizations. One
approach to this is synthetic data generation, which gen-
erates synthetic data that fits the statistical properties of
private data. Although many techniques have been devel-
oped under differential privacy (DP), most of them are
based on the assumption that the data is centralized. In
practice, data is often distributed among multiple clients
in a distributed setup. To achieve distributed DP data
synthesis, we designed a secure multi-party computation
(MPC) protocol. We identify that estimating the joint
distribution of distributed datasets is a key efficiency bot-
tleneck. To overcome this, our MPC protocol takes advan-
tage of information already leaked by DP to achieve a lin-
ear communication complexity in the number of records
and constant rounds of communication. Then, we extend
this protocol to an end-to-end framework that supports
the classical “Select-Measure-Generate” paradigm for
DP data synthesis. We instantiate the distributed version
of two state-of-the-art central methods, PrivSyn and AIM,
to demonstrate the flexibility of our framework. Our ex-
periments also demonstrate that our solution achieves
up to four orders of magnitude better efficiency than the
existing distributed method.

1 Introduction

Differentially private (DP) synthetic data generation
(SDG) aims to create a realistic artificial dataset that
shares a similar statistical property as the original dataset.
Such datasets can be used to support arbitrary down-
stream data analysis tasks without additional privacy loss
since they are post-processing. Almost all DP SDG meth-
ods focus on the centralized setting [14, 15, 21, 22],
where each data owner can only generate synthetic
datasets on their own. But in practice, data is often dis-
tributed among multiple clients in a distributed setup. For

example, a patient’s blood pressure and their economi-
cal situation may be held by two different organizations
(hospitals and banks), and requiring the two organiza-
tions to separately generate datasets would result in the
correlation between the two metrics being completely
lost. In this work, we focus on this kind of vertical set-
ting where different clients hold different attributes of
the same individuals.

Several methods have been proposed to address this is-
sue for the distributed DP SDG problem [13, 17, 18]. One
branch of these methods follows the idea of federated
learning that modifies the local generation and aggrega-
tion rules to overcome heterogeneity but this results in
reduced utility of generated datasets [13]. Another branch
is MPC-based, mirroring the entire generation process
in the centralized setting with MPC protocol [17, 18],
but they suffer from efficiency bottlenecks of comput-
ing two-way marginals, i.e., the joint distribution under
two different attributes. The protocol to compute a two-
way marginal has a communication complexity of O(nu),
where n is the number of records, and u is the domain
size of this two-way marginal. We follow the MPC line of
work and propose a significantly more efficient method
that reduces the communication complexity to O(n).

Specifically, we first make the observation that to com-
pute a two-way marginal (the efficiency bottleneck), we
can leverage the sort-and-count strategy to first sort the
two columns to group the same value combination to-
gether and then count the frequencies with a single pass.
This can reduce the communication to O(n logu). Next,
we observe that the information leakage in the one-way
marginals allows us to reveal the shuffled columns to
servers without any privacy loss. This observation fur-
ther improves the efficiency of secure sorting. Finally,
the complexity of the communication is reduced to O(n).
Empirically, on the real-world dataset UCI Adult [3],
we can estimate a two-way marginal within 5 seconds
and about 59 MB of communication while the existing
method CaPS [17] takes 80 seconds and 14,082 MB of

1

communication. As for end-to-end performance, we can
generate synthetic datasets with 91 two-way marginals
in about 11 minutes.

2 Preliminaries

We consider a dataset D with n rows and m columns.
Each row i in D represents a user indexed by a unique
identifier idi (1≤ i≤ n). Each column j in D represents
an attribute A⃗tt j (1 ≤ j ≤ m). The domain of attribute
A⃗tt j is denoted as Ui, with size |Ui| = ui (wlog, each
domain Ui has been encoded as integers {1, . . . ,ui}).
Marginal-based Data Synthesis. The synthesis of tabu-
lar data relies on a set of marginals with DP guarantee to
guide the generation of a synthetic dataset. A marginal
is a projection of D into low-dimensional synopses. A
one-way marginal M⃗a is the histogram over the domain
Ua of attribute A⃗tta in column a. A two-way marginal
M⃗a,b is the histogram over all the possible value combina-
tions under the joint domain Ua×Ub of attributes A⃗tta
and A⃗ttb. Typically, one-way and two-way marginals
are sufficient to depict the distribution of the original
dataset [14, 15, 22].

Select-Measure-Generate Workflow. Recent meth-
ods [14, 15, 22] for private tabular data synthesis fol-
low a three-step “Select-Measure-Generate” workflow
to achieve a good balance between privacy and utility.
(1) Select. Due to DP constraints, we focus on marginals
that give the most information. Typically, this involves
selection from all one-way marginals M⃗a and two-way
marginals M⃗a,b for each pair of columns a ̸= b. A score is
defined to quantify how much information each marginal
can contribute. (2) Measure. Apply the Gaussian mecha-
nism to measure each selected marginal. Since marginals
are histograms, adding DP noise to it is ‘DP-friendly’.
(3) Generate. Run an algorithm to generate a synthetic
dataset that follows the distribution of the measured
marginals, which is a post-processing.

In our task, we assume the vertical distributed setting,
where each of the m clients {C1, ...,Cm} only holds a sin-
gle column corresponding to an attribute, denoted as A⃗tti.
The clients hope to generate a synthetic table D′ that
preserves the statistical distribution of D while ensuring
that their respective private columns remain private. Note
that the domain of each column is assumed to be public
(e.g., the possible genders and income ranges), whereas
only the values within each column are viewed as pri-
vate. We assume three non-colluded semi-honest servers
P1,P2,P3 to collect the secret shares of columns provided
by clients. The servers then run the MPC protocols that
securely compute the process of Select and Measure and
output the selected DP marginals.

3 Our Approach

We start with a protocol to estimate the secret shares of
two-way marginals. Then, we extend this core protocol
to support two SDG methods in the distributed setting
to demonstrate its scalability in the “Select-Measure-
Generate” workflow. In the following part, we denote
⟨x⟩ as the secret shares of variable x, and ⟨X⃗⟩ as a vec-
tor containing secret-shared variables. All the operators
applied to these variables refer to an MPC sub-protocol,
achieving the same functionality as these operators. We
describe the MPC primitives used in this paper in Ap-
pendix A.

3.1 Efficient Marginal Estimation

Existing work [17] computes each two-way marginal
M⃗a,b by traversing two columns ⟨A⃗tta⟩ and ⟨A⃗ttb⟩. For
each record, it enumerates all the entries in the two-way
marginal ⟨M⃗a,b⟩ to update the frequencies. Assuming the
size of cross-domain Ua×Ub is ua,b, this MPC protocol
has a communication complexity of O(nua,b).

Estimation with Sort-and-count Strategy. To avoid
heavy linear-scan on M⃗a,b, we can leverage the proto-
col for frequency estimation in [2], namely, the Sort-
and-count protocol. The main observation is that if a
vector containing n elements is already sorted, then
the same elements are grouped together, and we can
count the frequency of each value with only O(n) se-
cure operations. In our task, the key for sorting is set as
K⃗a,b[i] = A⃗ttb[i] ·ua+ A⃗tta[i], for 1≤ i≤ n, which means
we treat A⃗tta as the lower bits of the key and A⃗ttb as
the higher bits of the key K⃗. Then, we obtain the permu-
tation pa,b of sorting by key K⃗a,b and apply it to obtain
pa,b(A⃗tta) and pa,b(A⃗ttb). By doing so, we can group the
same value combination together and then count the fre-
quency with only O(n) communication. For the sorting
part, if we use the existing state-of-the-art radix sorting
protocol [1] to implement the sorting part, we can achieve
O(n logua,b) communication complexity for estimating
a two-way marginal M⃗a,b.

Improved Secure Sorting with DP Leakage. It is obvi-
ous that the efficiency bottleneck of the Sort-and-count
strategy lies in the secure sorting. We further improve
this part to achieve O(n) communication complexity. Our
intuition is that if the histogram on a vector is already
known, then revealing this vector to a server only leaks
the order information. Following this observation, we
require each client Ci to append dummy elements to
his local column A⃗tti to make the histogram (one-way
marginal) on this vector satisfy DP. Then, when esti-
mating two-way marginal M⃗a,b, it is secure to reveal the
column A⃗tta or A⃗ttb to a server if the elements in this

2

column have been shuffled. Since the “Select-Measure-
Generate” workflow itself requires publishing the DP one-
way marginals, revealing the shuffled columns A⃗tta and
A⃗ttb is identical to publish the DP one-way marginals,
i.e., the server cannot know more information than what
“Select-Measure-Generate” workflow allows.

Below, we describe the process of our protocol.

1. Setup. Before sharing the private columns, each client
Ci samples ui noise samples from the discrete Gaus-
sian distribution: for 1 ≤ j ≤ ui, ηi, j ∼ N (σ1) with
standard deviation σ1 and appends ηi, j + s lines of
record { j} to the end of the column A⃗tti. Here, s is a
sufficiently large positive number, which serves as a
public parameter to ensure that ηi, j + s is a positive
number since we can only append items to a column.
Otherwise, the frequencies of some values will be-
come negative and cannot be represented in a vector.
Meanwhile, Ci creates a flag vector F⃗i. If the j-th el-
ement in A⃗tti is dummy, then F⃗i = 0, else F⃗i = 1. At
last, each client Ci secret-shares A⃗tti and F⃗i and sends
to servers P1,P2,P3.

2. DP One-way Marginals. Each client Ci first locally
computes the one-way marginal M⃗i. Then, Ci adds
the noise vector η⃗ j = {ηi,1, . . . ,ηi,ui} to marginal M⃗i
and obtain the DP one-way marginal M̃i. Finally, the
client Ci publish M̃i to all the servers.

3. Shuffle. To compute a marginal M⃗a,b, servers first
pad additional dummies to ensure A⃗tta and A⃗ttb have
the same length. We use na to denote the length of
A⃗tta and nb to denote the length of A⃗ttb. For example,
if na < nb, we append (nb−na)×{⊥} at the end of
⟨A⃗tta⟩ and (nb−na)×{0} at the end of ⟨⃗Fa⟩. Then,
the servers run a secure shuffling protocol to shuffle
⟨A⃗tta⟩, ⟨A⃗ttb⟩, ⟨⃗Fa⟩ with a common random permuta-
tion (now all the entries in ⟨⃗Fa⟩ and ⟨⃗Fb⟩ are equal, so
we only use ⟨⃗Fa⟩). Now we have n = na = nb.

4. Local sort and Secure Permutation. We first re-
veal the column π(A⃗tta) to server P1, who then
locally computes the permutation pa that can sta-
bly sort π(A⃗tta). P1 then secret-shares the sorted
column pa ◦ π(A⃗tta) to other servers and treat
pa as the input of a secure permutation proto-
col [1], which securely permutes π(A⃗ttb) and π(⃗Fa).
Now, we already have three permuted secret vec-
tors ⟨pa ◦π(A⃗tta)⟩, ⟨pa ◦π(A⃗ttb)⟩ and ⟨pa ◦π(⃗Fa)⟩.
The next step is revealing pa ◦π(A⃗ttb) to server
P2. Similarly, P2 compute the permutation pb that
securely sorts pa ◦π(A⃗ttb) and then use pb to se-
curely permute ⟨pa ◦π(A⃗tta)⟩ and ⟨pa ◦π(⃗Fa)⟩. At
the end of this step, we obtain ⟨pb ◦ pa ◦π(A⃗tta)⟩,

⟨pb ◦ pa ◦π(A⃗ttb)⟩ and ⟨pb ◦ pa ◦π(⃗Fa)⟩, which are
identical to sort A⃗tta, A⃗ttb and F⃗a using A⃗ttb as the
first key and A⃗tta as the second key. Now, we have
grouped the same value combination together.

5. Count and Compaction. In this step, we com-
pute the two-way marginal ⟨M⃗a,b⟩ given the sorted
columns ⟨A⃗tta⟩, ⟨A⃗ttb⟩ and flag vector ⟨⃗Fa⟩. We ini-
tialize a binary vector ⟨B⃗⟩ of size n and compute
the prefix sum as: ⟨⃗y[i]⟩ ← ∑

i
j=1 ⟨⃗Fa[j]⟩. Then, for

1 ≤ i ≤ n− 1 in parallel, we compute ⟨B[i]⟩ ← 1−
EQ(⟨A⃗tta[i]⟩,⟨A⃗tta[i+1]⟩) and set ⟨B[n]⟩← ⟨1⟩. Now,
the vector ⟨B⃗⟩ marks all the “last elements” at the end
of their groups. At last, we run a secure compaction
protocol. For each i such that ⟨B⃗[i]⟩ = 1, the com-
paction moves the corresponding prefix sum ⟨⃗y[i]⟩ to
the head of vector ⟨⃗y⟩. Finally, for 2≤ i≤ ua,b, we set
⟨M⃗a,b[i]⟩ as: ⟨M⃗a,b[i]⟩ ← ⟨⃗y′[i]⟩ − ⟨⃗y′[i−1]⟩ and set
⟨M⃗a,b[1]⟩ ← ⟨⃗y′[1]⟩.

Communication Cost. In step 2, we rely on calling the
secure shuffling protocol three times to shuffle the vec-
tors A⃗tta, A⃗ttb, and F⃗a. After locally sorting each column,
we use secure permutation twice to apply the permuta-
tion to another attribute column and the flag vector. In
the three-server semi-honest setting, the secure shuffling
has a communication complexity of O(n) and a constant
number of rounds. For the secure permutation, it can be
implemented with two times of secure shuffling [1]. In
step 3, all the prefix sums can be computed with the lo-
cal addition of secret shares. All the computations of
the secure equality test EQ(⟨A⃗tta[i]⟩,⟨A⃗tta[i+1]⟩) is per-
formed in parallel. At last, we can set the key as ⟨B⟩
to sort the payload ⟨⃗y⟩. Since ⟨B⟩ is a boolean vector,
applying radix sorting here only incurs O(n) communica-
tion and constant rounds. At last, we can assume that the
number of dummy items padded to each column is much
smaller than the original length of the column. Thus, all
the linear time operation on the column still has a com-
munication complexity of O(n). To sum up, the secure
estimation of two-way marginals has a communication
complexity of O(n) and a constant number of rounds.

Security and Privacy Proof Sketch. Our security proof
relies the ideal-real world paradigm [9]. In the ideal
world, the functionality outs the DP one-way marginals
and the shares of two-way marginals. In the real world,
the additional views are the shuffled vectors π(A⃗tta) re-
vealed to P1 and the pa ◦π(A⃗ttb) revealed to P2. These
views can be simulated by the DP one-way marginals M̃a
and M̃b output in Step 2. To simulate π(A⃗tta), the simu-
lator can construct a vector A⃗tt

′
a based on the one-way

marginal M̃a and then shuffle it with a random permuta-
tion π′. At last, we have π′(A⃗tt

′
a)≈ π(A⃗tta). With a sim-

3

ilar idea, we can also simulate pa ◦π(A⃗ttb). The proof of
DP is standard and similar to the proof for PrivSyn and
AIM [14, 22]. The additional statistical distance from
standard Gaussian caused by MPC can be absorbed into
the δ terms of approximated zCDP [5].

3.2 Secure Select-Measure

Our final protocol can compute an ideal functionality
that can compute all the two-way marginals and one-way
marginals, as well as the “Select” and “Measure” steps,
which is formally defined in Appendix B. To achieve
this, we combine the marginal estimation protocol and
the following steps to implement the “Select-Measure”
in the “Select-Measure-Generate” workflow. We discuss
two instantiations for PrivSyn and AIM separately.

Marginal Selection for PrivSyn. PrivSyn computes the
metric ˜InDifa,b = ∥M⃗a,b− M⃗a× M⃗b∥1 +N (0,σ2),1 ≤
a < b ≤ m for each two-way marginals [22]. To com-
pute ˜InDif in MPC, we need the secret shares of one-
way marginals. Note that we can compute ⟨M⃗a⟩ by
⟨M⃗a[i]⟩= ∑

ub
j=1 ⟨M⃗a,b[ua ∗ i+ j]⟩ and ⟨M⃗b⟩ by ⟨M⃗b[j]⟩=

∑
ua
i=1 ⟨M⃗a,b[ua ∗ i+ j]⟩ with only local addition of shares.
In the original definition of PrivSyn, all the marginals

are normalized into [0,1]. Here, to ensure the correct-
ness, we compute the score in MPC as ⟨ ˜InDifa,b⟩ =
∥⟨M⃗a,b⟩ ·n−⟨M⃗a⟩×⟨M⃗b⟩∥1 + ⟨N (0,σ2)⟩, i.e., we mul-
tiply each entry of ⟨M⃗a,b⟩ by n. At last, we can reveal all
the ˜InDifa,b to server P1 and treat the selection on ˜InDif
as the post-processing. After the selection, P1 returns the
set of indexes for candidate two-way marginals X .

Marginal Selection for AIM. The computation cost
of utility socrea,b = wa,b · ∥M⃗a,b − M⃗′a,b∥1 + Θa,b for
AIM [14] is similar to PrivSyn, which is also O(uaub).
Because wa,b,Θa,b and M⃗′a,b are all public values, it only
takes uaub times of secure absolute value computations.
However, selecting the final index x requires running an
exponential mechanism [8] in MPC. Previous work relies
on secure exponential operations [17]. In our instantia-
tion, we implement the report noisy max mechanism
in MPC to achieve the same result as the exponential
mechanism, thus avoiding the heavy secure exponential
operations. Specifically, we rely on a sub-protocol ΠdLap

to sample noise shares from the discrete Laplace distribu-
tion [7]. After adding noise, we search for the maximum
noise score ⟨socrex⟩+ΠdLap(0,b) and set X = {x}.
Measure. For x ∈ X , we add noise the selected two-way
marginals as ⟨M̃x⟩← ⟨M⃗x⟩+ΠdGauss(σ2), where ΠdGauss

is a protocol to generate discrete Gaussian noise sample
in MPC [19]. The final output of our protocol is a set
of noisy two-way marginals sent to server P1. The later
“Generate” step can be done by P1 as a post-processing,

100 200 300 400 485
Domain size ua, b

101

102

103

104

Co
m

m
un

ica
tio

n
(M

B)

Comunication overhead when n=48, 844

101 102 103 48, 844
Number of rows n

101

102

103

104

Co
m

m
un

ica
tio

n
(M

B)

Comunication overhead when ua, b =485

Sort-and-count+ (ours) Sort-and-count (ours) CaPS

Figure 1: The communication overhead under different
number of rows n and two-way marginal size ua,b.

without any MPC operations.

4 Experiment

We implement our protocol that computes the two-way
marginals in the MP-SPDZ framework [11], a library for
MPC in Python. We run all three servers P1,P2,P3 on a
single server with Intel Xeon Platinum 8369B 2.7GHz,
Ubuntu 20.04, and 4GB memory.

We compare our protocol with two baselines, the CaPS
protocol in [17], our solution with Sort-and-count strat-
egy, and the improved Sort-and-count protocol with linear
communication sorting (Sort-and-count+). Our evalua-
tion is conducted on the Adult dataset, with 48,844 rows
of records. We use the first two columns, the domain
size of this two-way marginal is 485. We vary the size
of two-way marginal by manually splitting the domain
into subranges of size u ∈ {100,200,300,400,485} and
vary the number of record n∈ {102,103,104,48,844} by
truncating the rows of the table.

As shown in Figure 1, both of our solutions signifi-
cantly outperform existing marginal estimation protocol
CaPS. Also, the overhead of our final protocol Sort-and-
count+ almost does not increase with domain size ua,b,
which is consistent with our expected communication
complexity O(n). Therefore, we conclude that our pro-
tocol for secure marginal estimation concretely outper-
forms the existing method CaPS.

4

References

[1] Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo
Kikuchi, Ariel Nof, Benny Pinkas, Katsumi Taka-
hashi, and Junichi Tomida. Efficient secure three-
party sorting with applications to data analysis and
heavy hitters. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communi-
cations Security, pages 125–138, 2022.

[2] Gilad Asharov, Koki Hamada, Ryo Kikuchi, Ariel
Nof, Benny Pinkas, and Junichi Tomida. Secure
statistical analysis on multiple datasets: Join and
group-by. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Se-
curity, pages 3298–3312, 2023.

[3] Barry Becker and Ronny Kohavi. Adult. UCI
Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

[4] Rikke Bendlin, Ivan Damgård, Claudio Orlandi,
and Sarah Zakarias. Semi-homomorphic encryp-
tion and multiparty computation. In Annual Inter-
national Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 169–188.
Springer, 2011.

[5] Mark Bun and Thomas Steinke. Concentrated dif-
ferential privacy: Simplifications, extensions, and
lower bounds. In Theory of cryptography confer-
ence, pages 635–658. Springer, 2016.

[6] Henry Corrigan-Gibbs and Dan Boneh. Prio: Pri-
vate, robust, and scalable computation of aggregate
statistics. In 14th USENIX symposium on net-
worked systems design and implementation (NSDI
17), pages 259–282, 2017.

[7] Cynthia Dwork, Krishnaram Kenthapadi, Frank Mc-
Sherry, Ilya Mironov, and Moni Naor. Our data, our-
selves: Privacy via distributed noise generation. In
Advances in Cryptology-EUROCRYPT 2006: 24th
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Pe-
tersburg, Russia, May 28-June 1, 2006. Proceedings
25, pages 486–503. Springer, 2006.

[8] Cynthia Dwork and Aaron Roth. The algorithmic
foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407, 2014.

[9] Oded Goldreich. Foundations of Cryptography, Vol-
ume 2. Cambridge university press Cambridge,
2004.

[10] Oded Goldreich. Foundations of cryptography: vol-
ume 2, basic applications. Cambridge university
press, 2009.

[11] Marcel Keller. Mp-spdz: A versatile framework
for multi-party computation. In Proceedings of the
2020 ACM SIGSAC conference on computer and
communications security, pages 1575–1590, 2020.

[12] Yehuda Lindell and Benny Pinkas. A proof of se-
curity of yao’s protocol for two-party computation.
Journal of cryptology, 22:161–188, 2009.

[13] Samuel Maddock, Graham Cormode, and Carsten
Maple. Flaim: Aim-based synthetic data generation
in the federated setting. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, pages 2165–2176, 2024.

[14] Ryan McKenna, Brett Mullins, Daniel Sheldon,
and Gerome Miklau. Aim: an adaptive and iter-
ative mechanism for differentially private synthetic
data. Proceedings of the VLDB Endowment, 15(11),
2022.

[15] Ryan McKenna, Daniel Sheldon, and Gerome Mik-
lau. Graphical-model based estimation and infer-
ence for differential privacy. In International Con-
ference on Machine Learning, pages 4435–4444.
PMLR, 2019.

[16] Silvio Micali, Oded Goldreich, and Avi Wigderson.
How to play any mental game. In Proceedings of
the Nineteenth ACM Symp. on Theory of Computing,
STOC, pages 218–229. ACM New York, NY, USA,
1987.

[17] Sikha Pentyala, Mayana Pereira, and Martine
De Cock. Caps: Collaborative and private syn-
thetic data generation from distributed sources. In
Forty-first International Conference on Machine
Learning, 2024.

[18] Mayana Pereira, Sikha Pentyala, Anderson Nasci-
mento, Rafael T de Sousa Jr, and Martine De Cock.
Secure multiparty computation for synthetic data
generation from distributed data. arXiv preprint
arXiv:2210.07332, 2022.

[19] Chengkun Wei, Ruijing Yu, Yuan Fan, Wenzhi
Chen, and Tianhao Wang. Securely sampling dis-
crete gaussian noise for multi-party differential pri-
vacy. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Se-
curity, 2023.

5

[20] Andrew C Yao. Protocols for secure computations.
In 23rd annual symposium on foundations of com-
puter science (sfcs 1982), pages 160–164. IEEE,
1982.

[21] Jun Zhang, Graham Cormode, Cecilia M Pro-
copiuc, Divesh Srivastava, and Xiaokui Xiao.
Privbayes: Private data release via bayesian net-
works. ACM Transactions on Database Systems
(TODS), 42(4):1–41, 2017.

[22] Zhikun Zhang, Tianhao Wang, Ninghui Li, Jean
Honorio, Michael Backes, Shibo He, Jiming Chen,
and Yang Zhang. Privsyn: Differentially private
data synthesis. In Michael Bailey and Rachel Green-
stadt, editors, 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021, pages
929–946. USENIX Association, 2021.

A MPC Primitives

Secure Multiparty Computation (MPC) [10, 20] al-
lows a set of parties to jointly compute a function y =
f (D1, ...,Dm) without revealing their inputs Di (1≤ i≤
m). After the computation, all the parties can only know
the result y. Currently, the two main paradigms to imple-
ment MPC are garble circuits [12, 16] and secret sharing
[4, 6]. In this paper, we focus on a secret sharing scheme
that offers better scalability in the multi-party setting.

Client-server Model. In this paper, we consider a clas-
sical way to enable privacy-preserving aggregation in
the distributed setting, which is called the client-server
model. In the client-server model, a set of clients owns the
private data and is only responsible for some lightweight
local computation. After creating the required inputs,
they secret-share their private data into several helper
servers. Upon receiving the private data (secret-shared)
from clients, servers jointly run an MPC protocol to ob-
tain the aggregation results. We assume the ground truth
table D is distributed over multiple clients and build our
system on three help servers P1,P2,P3.

Security Model. We assume the help servers P1,P2,P3
are semi-honest and non-colluded. In this assumption,
a single corrupted server might attempt to infer the val-
ues in clients’ columns, but follows the execution of the
protocol. As for the clients, we first assume them to be
semi-honest and show how to extend the protocol to be
robust against malicious clients who might input invalid
values to break the correct execution and skewed random-
ness to violate DP protection. For the proof of security,
we rely on the ideal-real world paradigm [9] and work on
the hybrid model. The servers can access the sub-protocol

Functionality FMarginals2

Input: For 1≤ i≤ m, client Ci inputs the attribute
column A⃗tti. The synthetic algorithm is PrivSyn or
AIM.
Size leakage: Upon receiving (QuerySize,c) from
the corrupted server Pc, send the length of columns
n to Pc.
Marginal Estimation: Prepare the ground true
marginals.

1. For 1 ≤ a < b ≤ m, computes the two-way
marginal M⃗a,b over the value combinations under
Ua×Ub, based on column pairs (A⃗tta, A⃗ttb).

2. For 1 ≤ a ≤ m, compute the one-way marginal
M⃗a for each column A⃗tta.

3. For 1 ≤ i ≤ m, compute the noisy one-way
marginal M̃i = M⃗i +N

(
0,σ2I

)
and send to P1.

Select: Select a subset of two-way marginals.

• PrivSyn: Compute ˜InDifa,b = ∥M⃗a,b − M⃗a ×
M⃗b∥1 + ησ, where ησ is a value sampled from
discrete Gaussian with standard deviation σ. Send
all the ˜InDifa,b to P1 and select a set of pairwise in-
dexes X based on the marginal selection algorithm
in [22].

• AIM: Apply exponential mechanism on M⃗a,b (for
1≤ a < b≤ m) to select one pairwise index X =
{x}. The utility function is defined as u(a,b) =
wa,b · ∥M⃗a,b−M⃗′a,b∥1 + Θa,b, where wa,b and Θa,b

are public parameter defined in [14], M⃗′a,b is the
marginal on previously generated dataset.

Measure: Measure the selected two-way marginals.
For each selected pairwise index x ∈ X , compute the
noisy two-way marginal M̃x = M⃗x +N

(
0,σ2I

)
and

send to P1.

Figure 2: The ideal functionality FMarginal2 to select and
measure the two-way marginals. The final generation is
a post-processing executed by server P1.

as a sub-functionality executed by a trusted party. We say
that a protocol is constructed in a f -hybrid model if it
accesses a sub-functionality f .

Linear Secret Shares. Our system is mainly built on the
linear secret share (LSS). Specifically, we use three-party
replicated secret shares [] on ring elements R . To share
secret value x, a client can choose three random elements
x1,x2,x3 ∈R . The server P1 receives tuple (x1,x2), server
P2 receive (x2,x3), and server P3 receive (x3,x1). We use

6

⟨x⟩ to denote the secret shares of x. LSS requires no com-
munication for the addition with a public value a+ ⟨x⟩,
multiplication with a public value a · ⟨x⟩, and addition of
two values ⟨x⟩+ ⟨y⟩. We also rely on three operations
that require communication among parties: the multipli-
cation of shares ⟨x⟩ · ⟨y⟩, equality test EQ(⟨x⟩,⟨y⟩), and
conditional swap MUX(⟨c⟩,⟨x⟩,⟨y⟩), which returns ⟨x⟩ if
condition ⟨c⟩= ⟨1⟩ else ⟨y⟩.

B Full Ideal Functionality

In this section, we formally define the functionality
that achieves distributed “Select-Measure”. We also dis-
cuss alternative approaches to show why the functionality
should faithfully follow the “Select-Measure” process in
the centralized setting.

7

	Introduction
	Preliminaries
	Our Approach
	Efficient Marginal Estimation
	Secure Select-Measure

	Experiment
	MPC Primitives
	Full Ideal Functionality

