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1 Introduction

Differential privacy [6] is a mathematical concept for
evaluating privacy protection. One of the most funda-
mental definitionswithin differential privacy is 𝜖-differential
privacy (𝜖-DP), where the parameter 𝜖 is referred to as
“privacy loss.”

Accurately estimating the privacy loss 𝜖 in differen-
tial privacy requires complex probabilistic computations,
making estimation errors likely. These errors can occur
not only when programmers implement algorithms but
also when privacy experts design algorithms [9]. For ex-
ample, in the case of the Sparse Vector Technique (SVT),
it has been reported in later studies that the estimated
privacy loss in earlier research was incorrect [4, 10].
Many methods for estimating privacy loss have been

extensively studied [1–3, 5, 11, 12, 14–17]. However, de-
pending on the algorithm, thesemethodsmay suffer from
long computation times or low accuracy, and a practical
estimation method has yet to be fully established.

In this study, we proposeDPEST, a programming frame-
work for efficiently estimating privacy loss in differential
privacy. Programmers can obtain the privacy loss simply
by writing the algorithm using DPEST. Our approach
estimates privacy loss as precisely as possible by deriving
the probability distribution of outputs. To compute out-
put distributions, we employ either the sampling method
or the probability accumulation method. Furthermore, a
more optimal method may be adopted by considering the
dependencies between random variables. This proposed
estimation method enables more accurate privacy loss
estimation with shorter execution times than existing
methods for certain algorithms. Moreover, since DPEST
supports low-level operations, it allows for flexible pro-
gramming. We have confirmed that existing algorithms,
used as evaluation benchmarks in previous research, can
be implemented using DPEST.
The contributions of this paper are as follows:

(1) We propose DPEST, a new programming frame-
work that efficiently estimates the privacy loss 𝜖 by
computing the probability distribution of outputs.

(2) We design DPEST to support low-level program-
ming, allowing flexible implementation of differ-
ential privacy-compliant algorithms.

(3) Through experimental comparisons, my method
achieved shorter execution times and higher esti-
mation accuracy than existing methods for certain
algorithms.

This paper is organized as follows. In Section 2, we
review the relatedwork. In Section 3, we describe our pro-
posed method in detail. Finally, in Section 4, we present
experimental results comparing our approach with exist-
ing research.

2 RELATEDWORK

In black-box methods [3, 5, 17], privacy loss is estimated
based on hypothesis testing [5] or a classifier trained
using machine learning [3, 17] on the obtained samples.
A major limitation of these black-box methods is that
they do not analyze the internal structure of the program,
making optimization difficult.

In rigorous verification- and proof-based privacy loss
estimation methods [1, 11, 12, 14–16], privacy loss is es-
timated by utilizing proofs or mathematical optimization
solvers based on the program’s internal structure. These
methods rely on high-performance symbolic solvers or
theorem provers which can lead to excessive computa-
tion times or inapplicability to certain algorithms. Fur-
thermore, there is an additional issue in that the bound-
ary between applicable and non-applicable programs is
not clearly defined.

3 METHOD

To address the issues described in Section 2, this paper
proposes DPEST, a domain-specific language (DSL) de-
signed for efficient privacy loss estimation. DPEST has
the following features:
(1) It is a programming framework designed for effi-

ciently estimating privacy loss.
(2) Unlike existing verification- and proof-based es-

timation methods that rely on mathematical opti-
mization solvers or theorem provers, DPEST does
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not depend on such solvers, ensuring that estima-
tion is always possible within the scope of pro-
grams expressible in DPEST.

(3) As a DSL, it supports low-level operations, allow-
ing for flexible programming.

(4) By leveraging algorithm-specific characteristics
for optimization, DPEST enables more efficient pri-
vacy loss estimation.

Hereafter, Section 3.1 introduces DPEST as a program-
ming framework for estimating privacy loss in programs,
and the way to use and Section 3.2 describes the privacy
loss estimation mechanism of DPEST.

3.1 DPEST: Programming Framework

DPEST is implemented as a Python library, allowing
algorithms to be written using both Python’s built-in
operations and DPEST’s specialized operations for trans-
forming random variables. Variables with noise added
to satisfy differential privacy can be treated as random
variables. DPEST provides basic random variable trans-
formation operations, such as like 𝐴𝑑𝑑 , 𝑀𝑢𝑙 , 𝐵𝑟 , 𝐶𝑎𝑠𝑒 ,
and𝑇𝑜𝐴𝑟𝑟𝑎𝑦. By combining these operations as transfor-
mations of random variables, we were able to describe all
the algorithms used as experimental subjects in existing
studies [3].
As an example, when the NoisyMaxLap[5, Alg.7] al-

gorithm— which adds Laplace noise to each element
of an array and returns the maximum value— is imple-
mented using DPEST, it results in the source code shown
in Program 1. The algorithm itself is implemented in the

Program 1: Implementation of the NoisyMaxLap

Algorithm Using DPEST

1 # Omitted: Importing necessary modules
2 def noisy_max_lap():
3 INPUT_ARR_SIZE, eps, sens = 5, 0.1, 1
4 LapArr = list(laplace_extract(InputArray(

INPUT_ARR_SIZE, adj="inf"), sens/eps))
5

6 Y = LapArr[0]
7 for i in range(1, INPUT_ARR_SIZE):
8 Y = Br(Y, LapArr[i], Y, LapArr[i])
9 return Y
10

11 if __name__ == "__main__":
12 ConfigManager.load_config()
13 alg = noisy_max_lap()
14 privacy_loss = eps_est(alg)

noisy_max_lap function, and by applying the eps_est
function to its return value, the algorithm is analyzed,
and the privacy loss is computed. Additionally, Config-
Manager.load_config() is a function that loads various

Algorithm 1 Algorithm for Estimating Privacy Loss
1: function eps_est(alg)
2: max_eps← 0
3: # Step1. Generate a calculation graph with injected depen-

dency information from the algorithm
4: 𝑔← gen_calc_graph(alg)
5: for each (𝐷,𝐷 ′ ) in input_list do
6: # Step2. Insert the input and calculate the probability

distribution
7: 𝑌,𝑌 ′ ← calc_pdf(𝑔, 𝐷, 𝐷 ′ )
8: # Step3. Search for the point where the probability ratio

is maximized
9: eps← search_max_eps(𝑌,𝑌 ′ )
10: if max_eps < eps then
11: max_eps← eps
12: end if

13: end for

14: return max_eps
15: end function

parameters, such as the number of samples and the num-
ber of bins in the histogram.

3.2 Privacy Loss Estimation Mechanism

of DPEST

We’ll explain the mechanism of the eps_est function for
estimating the privacy loss of an algorithm.

The fundamental approach of DPEST for privacy loss
estimation is to treat values as random variables once
noise is added. This allows the final output to be handled
as a random variable as well. The method then derives or
approximates the probability density function (PDF) or
probability mass function (PMF) for two adjacent input
datasets and computes the ratio of these densities or
probabilities, searching for the point where the ratio is
maximized.

More specifically, the eps_est function estimates pri-
vacy loss by taking an algorithm alg as an argument
and executing the following three-step process, as de-
scribed in Algorithm 1. In Step 1, the function takes an
algorithm represented by the variable alg as input and
generates a computational graph that incorporates the
dependencies among the arguments of each operation. If
the arguments of an operation are independent, the prob-
ability distribution of the operation’s output is computed
using the probability accumulation method, as described
in Section 3.2.2. If the arguments are not independent,
the sampling method described in Section 3.2.1 is used
instead.

In Step 2, the computational graph 𝑔 of the algorithm
is executed with two adjacent input datasets D and
D′, yielding the corresponding output probability dis-
tributions 𝑌 and 𝑌 ′. According to the definition of 𝜖-
differential privacy (𝜖-DP), ideally, the algorithm should
be executed for all possible input datasets to compute
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their output probability distributions. However, since it
is computationally expensive, we adopted adjacent input
dataset patterns as proposed in previous studies [3, 5, 17],
which were empirically chosen.

In Step 3, the function finds the point where the ratio
of the two output distributions 𝑌 and 𝑌 ′ is largest.

In the following sections, we explain the methods for
obtaining the output probability distribution.

3.2.1 Sampling Method This method repeatedly per-
forms sampling from the original probability distribu-
tion, executes the program using these samples to ob-
tain outputs, and constructs a histogram based on the
outputs to approximate the probability mass function
(PMF). The number of samples, SAMPLING_NUM, and the
number of histogram bins, B, are given as parameters. If
SAMPLING_NUM is sufficiently large, increasing B allows
for a more accurate estimation of the PDF. However, if
SAMPLING_NUM is small, a larger B results in fewer sam-
ples per bin, leading to higher variance and lower esti-
mation accuracy.

3.2.2 Probability Accumulation method In DPEST, when
the random variables used as arguments in an operation
are independent, the probability accumulation method is
used to obtain the output probability distribution by accu-
mulating the probabilities of mapped values. To support
this method, DPEST operations enable transformations
of random variables. If a program variable 𝑋 represents
a random variable, its PDF or PMF is represented in a dic-
tionary format like 𝑓𝑋 (𝑥) = {𝑥1 : 𝑝1, 𝑥2 : 𝑝2, . . . , 𝑥𝑛 : 𝑝𝑛}.
For example, when considering the sum of two inde-

pendent random variables, the resulting probability dis-
tribution is obtained through convolution. Convolution
can be interpreted as the operation of summing the origi-
nal probabilities that map to a given value. This operation
itself can be seen as an accumulation of mapped proba-
bilities. In DPEST, the sum of two random variables can
be computed using the operation, 𝐴𝑑𝑑 (𝑋1 : 𝑃𝑚𝑓 , 𝑋2 :
𝑃𝑚𝑓 ). The resulting probability distribution is given by
the formula, 𝑓𝑌 (𝑦) =

∑
𝑥 𝑓𝑋1 (𝑥) 𝑓𝑋2 (𝑦−𝑥). To ensure con-

sistent value intervals for the random variables, DPEST
employs spline interpolation before performing the com-
putation. The final output probability distribution for the
sum is then obtained using the following procedure.

𝑓𝑦 =

{
𝑥1𝑖 + 𝑥2𝑗 :

∑︁
𝑥

𝑓𝑋1 (𝑥) 𝑓𝑋2

(
(𝑥1𝑖 + 𝑥2𝑗 ) − 𝑥

)
��� 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, 𝑖, 𝑗 ∈ Z

}
.

In this method, errors in estimation basically may arise
due to two factors: approximating the original probabil-
ity density function (PDF) as a probability mass function

(PMF) using histograms and limiting the range of ran-
dom variables. Especially, for algorithms like OneTimeR-
APPOR and RAPPOR [7], where the random variables
representing the noise distribution take only categorical
values and directly handle probability mass functions
from the beginning, no estimation error occurs. Given 𝑑
as the number of dimensions in the input data and𝑚 as
the number of possible values for each random variable,
the estimation can be performed with a computational
complexity of only 𝑂 (𝑚𝑑 ), which is lower than that of
the sampling method 𝑂 (SAMPLING_NUM) when 𝑑 and𝑚
is small.

3.2.3 Optimization It is possible to optimize specific al-
gorithms by leveraging dependencies between random
variables and the characteristics of the algorithm. For
example, in the case of an algorithm that returns an ar-
ray of random variables, if all elements in the array are
independent random variables, the maximum ratio of
each random variable’s probability distribution can be
computed individually, and their product can be taken
to obtain the maximum ratio of the original output prob-
ability distribution.

4 EVALUATION

We compared the accuracy and execution time of DPEST
with existing privacy loss estimation methods, StatDP [5]
and DP-Sniper [3]. In the experiments, we used the same
algorithms as those employed in the DP-Sniper [3] paper.
The hyperparameters of DPEST were configured so that
its execution time was on the same order of magnitude
as that of existing methods. The experimental results are
shown in Figure 1 and Figure 2.

For the algorithms LaplaceMechanism, NoisyHist1 [5,
Alg.9], NoisyHist2 [5, Alg.10], LaplaceParallel, Noisy-
MaxLap [5, Alg.7], NoisyMaxExp [5, Alg.8], OneTimeR-
APPOR, and RAPPOR, where the probability accumula-
tionmethodwas used by leveraging the independence be-
tween random variables, we achieved a significant reduc-
tion in execution time while maintaining high accuracy.
Additionally, for algorithms such as NoisyArgMaxLap [5,
Alg.5], NoisyArgMaxExp [5, Alg.6], SVT1/2/4/5/6 [10],
and TruncatedGeometric [8, Ex. 2.2], where the output
is categorical and the sampling method was used, we
achieved comparable accuracy and execution time to ex-
isting methods. On the other hand, for algorithms such
as SVT3 [10], SVT34Parallel (𝑎 ↦→ (SVT3(𝑎), SVT4(𝑎))),
NumericalSVT [13, Fig.10], and PrefixSum [13, App. C.3],
which include floating-point values in their output, the
estimated privacy loss was observed to be higher. This is
due to the insufficient number of samples relative to the
number of bins in the estimation process. Improving it
remains a future challenge for DPEST.
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