
PRIVATE QUANTILE ESTIMATION IN THE TWO-SERVER MODEL

Jacob Imola
University of Copenhagen

Denmark
jaim@di.ku.dk

Fabrizio Boninsegna
University of Padova

Italy
fabrizio.boninsegna@phd.unipd.it

Hannah Keller
Aarhus University

Denmark
hkeller@cs.au.dk

Anders Aamand
University of Copenhagen

Denmark
aa@di.ku.dk

Rasmus Pagh
BARC, University of Copenhagen

Denmark
pagh@di.ku.dk

Amrita Roy Chowdhury
University of Michigan, Ann Arbor

United States of America
aroyc@umich.edu

ABSTRACT

Estimating quantiles is a fundamental statistics in distributed private learning. However, there is
an accuracy gap between what can be achieved in the local model vs the central model of privacy.
Specifically, prior work shows an error bound of O(log(B)2

ε
√
n

) in the local model where B is the domain

size, while the estimates in the central DP model can achieve an error bound of O(log(B)
εn). In this

paper, we bridge this gap with the help of cryptographic primitives while working in the two-server
model.

1 Introduction

Distributed learning refers to a scenario where data is distributed across multiple clients, and a data analyst seeks to
compute aggregate statistics of the joint dataset. A particularly important and fundamental statistic of interest is the
estimation of quantiles. However, when dealing with sensitive data, publishing quantiles can inadvertently expose
information about individuals within the dataset. For example, if an organization wants to publish the median of its
users’ ages, it could reveal the birth date of a particular user, thereby compromising their privacy. Local differential
privacy (LDP) offers a solution to this issue. However, there is a significant gap in accuracy compared to what can be
achieved in the central model. Specifically, prior work shows an error bound of O(log(B)2

ε
√
n

) in the local model where B

is the domain size, while the estimates in the central DP model can achieve an error bound of O(log(B)
εn).

In this work, we focus on bridging this gap by using cryptographic primitives, particularly secure multiparty computation
(MPC). MPC allows two or more parties to collaboratively compute a function based on their private inputs, without
revealing anything other than the function’s output during the process. Thus, high-accuracy quantile estimates with
rigorous privacy guarantees can be achieved in our setting by using MPC to implement state-of-the-art central DP
mechanisms. While this is theoretically feasible using off-the-shelf MPC tools, practical implementations pose a
number of challenges. First, directly applying this approach to compute aggregate user statistics would require running
a multi-round protocol across the devices of all clients which is impractical for most real-world settings. Second,
generic solutions introduce significant computational overhead, which becomes prohibitively costly with large client
populations and/or data domains. We tackle these challenges as follows. First, we consider an intermediate trust model
called outsourced MPC model where the analyst’s role is distributed across a small group of non-colluding parties.

These parties receive secret-shared inputs from the clients and collaboratively compute the required aggregate statistics
using an MPC protocol. As long as at least one party remains honest, the privacy of the clients’ inputs is preserved,
and only the desired aggregate result is disclosed. A particular instance of this model, known as the two-server model,
has been successfully implemented in several large-scale MPC applications [1, 2]. Second, we introduce a novel MPC
protocol for estimating quantiles that is highly efficient. Our key innovation is to allocate a portion of the privacy
budget to release carefully chosen intermediate statistics from the joint dataset, which helps to reduce the complexity of
the MPC operations required. In terms of asymptotic cost analysis, our protocol needs to secure sort only O(log

2(B)
ε)

elements, compared to the naive implementation which would require sorting the entire dataset of length n which
becomes a bottleneck as n increases.

2 Background

We consider the discrete data domain [B], where B is a large integer. We let X = {x1, . . . , xn} be a private dataset,
where n is the dataset size, assumed to be public. We let x(i) denote the ith element of X when X is in sorted order. For
q ∈ [0, 1], the qth quantile of X is x(r) where r = ⌊qn⌋. For z ∈ [B], we will consider the quantile error, defined by

errX,q(z) =

∣∣∣∣∣q − 1

n

∑
x∈X

1[x ≤ z]

∣∣∣∣∣ ,
that is, the difference between the desired quantile q and the actual quantile q′ of z. To avoid edge cases with the above
definition, we assume for the rest of the paper that all points in X are distinct, so x(1) < x(2) < · · · < x(n). However,
our results can easily generalize to this edge case with no major changes.

We are interested in computing approximations to m given quantiles q1, . . . , qm ∈ [0, 1]. We will need a mild
assumption that the quantiles are not too close to each other, formally that |qi − qj | ≥ Ω(1

nε log(B)2 log log(Bδ)). This
assumption is often true, such as when the quantiles are equally spaced from 0 to 1.

2.1 Cryptographic Primitives

Linear Secret Shares (LSS). Linear secret shares (LSS) is a secure multi-party computation (MPC) technique that
allows mutually distrusting parties to securely compute over secret inputs. We use the notation [x] to denote a
linear secret sharing of an input x ∈ F that is shared between k parties. Each party Pi holds a share [x]i such that∑k

i=1[x]i = x. The secret x can be constructed iff all the parties reveal their shares and then sum them up, which
means this scheme preserves perfect security against k − 1 corrupted parties. LSS supports the following local linear
operations.

• [z]← [x] + [y]: each parties can locally compute [z]i ← [x]i + [y]i

• [z]← c · [x]: each parties can locally compute [z]i ← c · [x]i
• [z]← c+ [x]: P1 computes [z]i ← c+ [x]i, Pi computes [z]i ← [x]i for all i ∈ [k]\{1}.

Multiplication requires interaction between the parties and is done with the help of Beaver’s triples [3].

2.2 Differential Privacy

In this work we consider (ε, δ)-differential privacy (DP), where the neighboring relation is defined for datasets that
differ by the data of a single individual. Additionally, we will make use of privacy amplification by shuffling [4], which
states that a uniform random perturbation of n private messages, each with 1 ≤ ε0 ≤ O(log(n)/ log(1/δ)) privacy
budget, satisfies (ε, δ)-DP with ε = O

(√
eε0 log(1/δ)/n

)
.

3 Proposed Protocol

Setting. We consider n clients Ci, i ∈ [n], each with a private input xi. Additionally, we have two untrusted and
non-colluding servers S0 and S1 Each client splits their input into two shares [x]b which is shared with the server Sb.
The two servers then engage in an MPC protocol to compute m quantiles Q of the joint dataset X = {x1, · · · , xn}.
We consider the semi-honest threat model where all the parties follow the protocol honestly, but their contents and
computations can be observed by an adversary.

2

Algorithm 1 ΠQuant, protocol for computing quantiles under MPC.
Input. [X], n = |X|, a set Q of m quantiles, parameters ε, δ, domain size B

1: I1, . . . , I2m+1 = FormIntervals([X], Q,B,Mε,δ)
2: [X1], . . . , [Xm] = FormBuckets([X], n, I1, . . . , I2m+1, ε, δ)
3: for 1 ≤ j ≤ k do
4: Let q̃j be renormalized qj , defined in (1). ▷ Goal is to find quantile q̃j in [Xj]
5: Securely shuffle [Xj]
6: Securely sort [Xj].
7: zj = EMSingle([Xj], q̃j)
8: end for
9: Output (z1, z2, · · · zm)

3.1 Naive Approach under MPC

For a data domain [B], the exponential mechanism is a reasonable choice to compute a quantile privately. For a
candidate b ∈ [B] and quantile q ∈ [0, 1], the utility function uq(b,X) = −errX,q(b) measures the quantile error. This
utility has sensitivity just 1

n , and has been used successfully in the central model [5, 6]. In our case, the exponential
mechanism simply returns a candidate b with probability proportional to exp(εnuq(b,X)/2). As B is typically very
large (such as 232), practical implementations of this mechanism use the observation that uq(b,X) is constant for any b
that lies between consecutive (sorted) points in X , and thus implicitly represent the probability distribution on [B] as n
intervals. However, there are several challenges to this approach under MPC.

1. Sorting is a particularly computationally expensive as it uses a super-linear number of comparison operations,
which is costly under secret shares, and has O(log n) span. For concrete practical efficiency, these log n factors
can make a large impact.

2. The utility scores uq(b,X) are themselves sensitive, and thus computing the exponential exp(εnuq(b,X)/2)
requires exponentiating a secure value. Secure exponentiation is an especially costly operation, and using it
Ω(n) times should be avoided.

Our algorithm addresses each of these bottlenecks, which we describe in the next section.

3.2 Our Approach

First, we outline the high-level ideas, followed by a more detailed explanation of the individual steps. The full protocol
is presented in Alg. 1. Our approach is based on the following key ideas:

• For each quantile to be estimated, we first allocate a portion of the privacy budget to compute an interval
containing the quantile. This serves as an initial data filtering step, effectively reducing the size of the dataset
to be sorted.

• Next, we need to bucket the data elements into these intervals. However, a naive bucketing strategy under
MPC would involve padding the length of each bucket to be n, which would undermine the data filtering step
mentioned earlier. We address this issue by leaking a differentially private count of the number of elements in
each bucket.

• Finally, we provide an efficient implementation of the secure exponential mechanism to compute the individual
quantiles. Our key insight is that, by releasing a differentially private count of the buckets, we effectively
release a noisy ranking of the data elements. This allows us to compute the weights for the exponential
mechanism without the need for the costly secure exponentiation operation.

We will elaborate on each of these steps in the next section.

FormIntervals - Reduce Effective Data Size. The naive approach requires sorting the entire dataset which is
computationally expensive. Hence, our first idea is to reduce the size of the effective dataset to be considered by
constructing for each qith quantile an interval Ii containing it. This approach would limit the sorting operation to
only the elements within these intervals. One way to construct these intervals is to use an LDP protocolM for CDF
estimation with maximum absolute error α. If such a protocol exists, then any c ∈ [B] such thatM(c) ∈ [q−α, q+α]
would return a 2α approximate qth-quantile. Thus, for each qj we can construct an interval Ij = [c1, c2), with c1, c2
s.t.M(c1) ∈ [qj − 2α, qj − α] andM(c2) ∈ [qj + α, qj + 2α] so that any qj th quantile would lie in Ij with constant

3

probability, and |{x ∈ X : x ∈ Ij}| = O(αn). In Appendix A we show that there exists a (ε, δ)-shuffle DP1 protocol
for CDF estimation with expected maximum absolute error Õ(log2 B/εn) if ε is sufficiently small and there are enough
users. Thus, our assumption |qi − qj | ≥ Ω̃(log2 B/εn) assures that Ii ∩ Ij ̸= ∅. The full algorithm is presented in Alg.
3.

FormBuckets - Leak Differentially Private Counts. Based on the aforementioned intervals, we construct a partition
of [B] into 2m+ 1 buckets B (by filling the holes between Ij−1 and Ij). Thus Bj = (B1, . . . , B2m+1) contains qj-th
quantile for j even. However, we cannot directly populate these buckets since it reveal the bucket sizes. The naive
strategy under MPC is to pad the size of each bucket to n by adding dummy records. However, doing this we lose our
advantange of forming the intervals. We mitigate this by leaking a differentially private count of the bucket sizes, i.e.,
instead of exhaustive padding we only need enough dummy records to satisfy DP (which is a much smaller quantity).
Specifically, for each bucket Bj , each server Sb adds ηbj dummy records where ηbj is drawn from a modification of the
binary mechanism [7] that releases only positive noise. Let Xj be the subset of the data X contained in bucket B2j . We
can now search for each quantile qj over the subset Xj of size O(αn), rather than over the entire dataset. However,
these quantiles must be normalized to account for both the smaller dataset size and the continual counting noise. This is
done as follows:

q̃j =
qjn−

∑j−1
i=1 |Xj |+ j log3(2m) log(1/δ)

ε

|Xj |
. (1)

The algorithm is formalized in Alg. 4.

EMSingle - Efficient MPC Implementation of Exponential Mechanism. We have effectively reduced the general
quantiles problem to outputting one quantile for each of the disjoint intervals, each containing O(αn) elements, via
the exponential mechanism. At first glance, it appears that computing the exponent exp(εnuq̃j (b,X)/2) requires
exponentiating a secure value, since uqj (b,X) depends on the user’s sensitive data. However, we can observe
that the utility function is a public constant now for all elements b ∈ [x(i), x(i+1)), and this constant is in fact
uqj (b,X) = |q̃j− i

n | because (1)
∑

x∈Xj
1[x ≤ b] = i, (2) the quantile q̃j is normalized using the noisy rank information

as computed before. Thus, the exponentiation can now be done in the clear since it involves public information, and the
implementation may proceed by sampling an index i with probability proportional to exp(εnuqj (b,X)/2)|x(i+1) −
x(i)|, and then sampling uniformly from [x(i), x(i+1)). Importantly, this can be achieved without any costly secure
exponentiation operation. The full algorithm is presented in Alg. 5.

4 Formal Analysis

In this section, we formalize the privacy and utility guarantees of our protocols.

Theorem 4.1. Our proposed protocol ΠQuant (Alg. 1) securely implements FQuant (Figure 1) with leakage LQuant
(Figure 1).

The concept of DP leakage has been previously studied in many MPC based works [8, 9, 10, 11, 12] . This relaxes
the standard MPC guarantee, where no participant can learn anything beyond the output, by permitting participants to
access additional information, with the condition that this information remains differentially private. Formally, this is
represented by introducing a leakage term that captures the extra information revealed during the protocol execution,
which is then provided to the simulator in the security proof. This framework allows for comparing different protocols
performing the same functionality based on the extent of their leakage, which can vary significantly. It also provides a
more granular level of control over the leaked information, extending beyond the standard DP definition.

We adopt this approach for our security definition, requiring protocols to explicitly specify their leakage term, denoted
by L, that is revealed alongside the output in the ideal-world functionality. Specifically, we follow the formalism
outlined in [8]. A protocol that implements functionality F is considered secure with leakage L if it computes F and its
view can be simulated using (F ,L). We require that F and L be jointly defined to characterize their joint distribution
by a function F̂ . For further details, see Appendix E.

Privacy Analysis. We now state that the outputs to both servers combined with either of the leakages is DP.

Lemma 4.2. (Corollary of Theorem D.1). With respect to adding or removing an element from X ,
(FS0

Quant,L
S0
Quant,F

S1
Quant) satisfies (ε1 + ε2 + ε3, δ1 + δ2)-DP.

1The shuffler here is instantiated by our two servers.

4

Public Parameters.(ε1, δ1), (ε2, δ2), ε3 - Privacy parameters for the three stages; Q - Set of m quantiles
Initialize. c0 = 4

ε2
log3(m) log(1δ), Frequency oracle FO : [B]×R>0 7→ Y

Client Input. xi ∈ [B] - Each client’s private input
Functionality.

• Compute yi = FO(xi, ε1), i ∈ [p+ 1, n]. Compute a c.d.f from the responses {y1, · · · , yn} to learn intervals
I1, I2, . . . , I2m+1 partitioning [B], where each I2j has size |I2j | ≤ O(log(B)2 log log(B/δ)

ε1
) and consists of the

elements with rank near nqj (by assumption, the intervals do not intersect). (Details in Appendix A).
• Partition the dataset X into Xj = {[xi] : i ∈ Ij} for 1 ≤ j ≤ 2m+ 1. For every partition Xj , add nj + n′

j

dummy records with data min(Ij) where nj ∼ ComputeDummyCounts(2m+ 1, ε2, δ2). Let X̂j denote

the new set of records. Normalize the quantile as q̃j =
qjn−

∑j−1
i=1 |X̂i|−2jc0

|X̂j |
. (Details in Appendix C)

• For j = 1, 2, . . . ,m:
– Run the exponential mechanism with privacy budget ε3 and utility function uq̃j (·, X2j); that is,

sample an element zj ∈ [B] with probability proportional to exp(−nε3errX2j ,q̃j (zj)/2). (Details in
Appendix C)

• Define FQuant ← (z1, . . . , zm)

• Define LS0
Quant ← (yπ(1), . . . , yπ(n),

∑2m+1
i=1 n′

i, |X̂1|, . . . , |X̂2m+1|),

• Define LS1
Quant ← (yπ(1), . . . , yπ(n),

∑2m+1
i=1 ni, |X̂1|, . . . , |X̂2m+1|)

• The functionality with leakage F̂Quant is defined to be the joint distribution
(F̂S0

Quant, F̂
S1
Quant) with F̂Si

Quant = (FSi
Quant,L

Si
Quant)

Figure 1: Functionality F̂Quant = (FQuant,LQuant). We show that ΠQuant securely implements FQuant with leakage
LQuant

Lemma 4.3. (Corollary of Theorem D.1). With respect to adding or removing an element from X ,
(FS1

Quant,L
S1
Quant,F

S0
Quant) satisfies (ε1 + ε2 + ε3, δ1 + δ2)-DP.

Utility Analysis. Next, we present the formal utility analysis of ΠQuant:
Theorem 4.4. (Proven as Theorem D.2) For any input X ∈ [B]n, with probability at least 0.8, all estimated quantile
z1, . . . , zm satisfy

errX,q(z) ≤ O

(
log(mB)

ε3n
+

log3(m) log(1δ)

ε2n

)
.

Cost Analysis. The following theorem formalizes the computational cost of our protocol.

Theorem 4.5. ΠQuant takes O(m log2(B)
ε log log(B)) server-side secure comparison operations.

5 Related Work

The closest to us is [13]. We have three major differences with their work as follows. First, we consider the case of
answering multiple quantiles while [13] only computes a single quantile (median). Second, their algorithm does not
partition the dataset into smaller buckets, and thus involves O(n log n) secure comparisons. Third, their most efficient
construction only considers ε = ln 2 to avoid costly secure exponentiations the whereas we can support arbitrary values
of ε without performing any secure exponentiation.

References

[1] Apple and Google. Exposure notifications private analytics. https://github.com/google/
exposure-notifications-android/blob/master/doc/ENPA.pdf.

[2] Henry Corrigan-Gibbs, Dan Boneh, Gary Chen, Steven Englehardt, Robert Helmer, Chris Hutten-Czapski,
Anthony Miyaguchi, Eric Rescorla, and Peter Saint-Andre. Privacy-preserving firefox telemetry with prio, 2020.

5

https://github. com/google/exposure-notifications-android/blob/master/doc/ENPA.pdf
https://github. com/google/exposure-notifications-android/blob/master/doc/ENPA.pdf

[3] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum, editor, Advances
in Cryptology — CRYPTO ’91, pages 420–432, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[4] Vitaly Feldman, Audra McMillan, and Kunal Talwar. Hiding among the clones: A simple and nearly optimal
analysis of privacy amplification by shuffling. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 954–964, 2022.

[5] Haim Kaplan, Shachar Schnapp, and Uri Stemmer. Differentially private approximate quantiles. In International
Conference on Machine Learning, pages 10751–10761. PMLR, 2022.

[6] Adam Smith. Privacy-preserving statistical estimation with optimal convergence rates. In Proceedings of the
forty-third annual ACM symposium on Theory of computing, pages 813–822, 2011.

[7] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy under continual
observation. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing, STOC ’10, page
715–724, New York, NY, USA, 2010. Association for Computing Machinery.

[8] James Bell, Adria Gascon, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Mariana Raykova, and Phillipp
Schoppmann. Distributed, private, sparse histograms in the two-server model. Cryptology ePrint Archive, Paper
2022/920, 2022.

[9] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala, and Somesh Jha. Crypte: Crypto-
assisted differential privacy on untrusted servers. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’20, page 603–619, New York, NY, USA, 2020. Association for
Computing Machinery.

[10] Amrita Roy Chowdhury, Bolin Ding, Somesh Jha, Weiran Liu, and Jingren Zhou. Strengthening order preserving
encryption with differential privacy. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’22, page 2519–2533, New York, NY, USA, 2022. Association for Computing
Machinery.

[11] Phillipp Schoppmann, Lennart Vogelsang, Adrià Gascón, and Borja Balle. Secure and scalable document similarity
on distributed databases: Differential privacy to the rescue. Cryptology ePrint Archive, Paper 2018/289, 2018.

[12] Adam Groce, Peter Rindal, and Mike Rosulek. Cheaper private set intersection via differentially private leakage.
Cryptology ePrint Archive, Paper 2019/239, 2019.

[13] Jonas Böhler and Florian Kerschbaum. Secure multi-party computation of differentially private median. In
Proceedings of the 29th USENIX Conference on Security Symposium, SEC’20, USA, 2020. USENIX Association.

[14] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. Answering range queries under local differential privacy.
Proc. VLDB Endow., 12(10):1126–1138, June 2019.

[15] Graham Cormode, Samuel Maddock, and Carsten Maple. Frequency estimation under local differential privacy.
Proc. VLDB Endow., 14(11):2046–2058, July 2021.

[16] Vitaly Feldman, Jelani Nelson, Huy Nguyen, and Kunal Talwar. Private frequency estimation via projective
geometry. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 6418–6433. PMLR, 17–23 Jul 2022.

[17] Clément L Canonne and Abigail Gentle. Locally private histograms in all privacy regimes. In 16th Innovations
in Theoretical Computer Science Conference (ITCS 2025), pages 25–1. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2025.

[18] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’07), pages 94–103. IEEE, 2007.

[19] Goldreich Oded. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New
York, NY, USA, 1st edition, 2009.

6

A Quantile Estimation under LDP

In this section, we show a protocol for qth quantile estimation under local differential privacy, based on [14]. The
mechanism is based on CDF estimation under shuffled differential privacy.

Theorem A.1. Given a dataset X ∈ [B]n, for any δ ∈ (0, 1) and ε ∈ (0, C
√

log(logB/δ)] for some C > 0, and

n = Ω
(

logB log2(logB/δ)
ε2

)
there exists a (ε, δ)-shuffle DP mechanism that returns the CDF of X with expected

maximum absolute error O
(

log2 B
εn log

(
logB

δ

))
.

Proof. Consider a dataset X ∈ [B]n and let wI = 1
n

∑
x∈X 1[x ∈ I] be a range query. The idea, developed in [14], is

to arrange the data domain [B] into a b-ary tree, so that any range query can be answered by summing at most O(logB)
estimates. Then, perform a b-ary search on the tree to release the q-th quantile estimate.

A b-ary partitioning of B corresponds to sets B0, B1, . . . , Bℓ intervals with ℓ = ⌈logb B⌉+ 1. Each Bi contains the
intervals {[bℓ−i(j− 1), bℓ−ij) : 1 ≤ j ≤ bi}. We let Bi,j = [bℓ−i(j− 1), bℓ−ij) for convenience. For all i ∈ [1, . . . , ℓ]
a frequency LDP oracle FOi is instantiated with X so as to provide estimates of the frequency of Bi,j for each j ∈ [bi],
that we indicate as FOi(j). To increase utility, all the n private messages, used to populate each of the frequency oracles,
are randomly shuffled, so to apply amplification by shuffling [4].

Regarding frequency LDP oracles, there has been extensive research in this field in the recent year [14, 15], such that
there have been found protocols returning unbiased and uncorrelated estimates with low communication O(log bi); the
utility depends on the particular mechanism. Here, we choose the Private Geometric Response [16] which achieves

on each level of the tree an expected maximum absolute error for frequency estimation of O(

√
log(bi) log(1/δ̃)

nε̃) with
n = Ω(log(1/δ)ε̃2) under (ε̃, δ̃)-shuffle DP for ε̃ ∈ (0, 1] (Theorem 12 in [17]). By applying advanced composition

on all the ℓ frequency oracles, we obtain (Θ(ε̃
√

ℓ log(1/δ̃)), (ℓ + 1)δ̃))-shuffle DP for ε̃ ≤ 1/
√
ℓ. Thus, by setting

δ = (ℓ + 1)δ̃, there exists C > 0 such that ε̃ = ε

C
√

ℓ log(1/δ̃)
≤ 1√

ℓ
, where the last inequality holds for ε ≤

C
√

log(1/δ̃) = C
√

log((ℓ+ 1)/δ). Therefore, we have that any i-th frequency protocol returns estimates with

expected maximum absolute error O(

√
ℓ log(bi) log(ℓ/δ)

nε) for n = Ω(ℓ log
2(ℓ/δ)
ε2).

Using the b-ary tree structure, the fact that the estimates are unbiased, and the linearity of expectation over at most
(b− 1)ℓ estimates, we get that

E
[
max

I
|w̃I − wI |

]
≤ O

(
ℓ2 log(ℓ/δ)

εn

)
= O

(
log2 B log(logB/δ)

εn

)
for n = Ω

(
logB log2(logB/δ)

ε2

)
,

as log(bi) ≤ log(bℓ) = O(ℓ) and we assume b = Θ(1).

Thus, there exists an algorithm that releases α approximate qth quantiles for α = Õ(log2 B/εn). It is sufficient to
release any number r ∈ [B] such that w̃[0,r) ∈ [q − α, q + α].

B Omitted Details on Continual Observation

We write our algorithm for padding with dummy elements in Algorithm B. It generates noise which satisfies the
following properties:

Lemma B.1. With probability at least 1− δ, Algorithm B does not fail.

Proof. With probability at least 1 − δ, all ηi,j satisfy |ηi,j | ≤ T 2 log(2/δ)
ε . Indeed, the tail probability of the laplace

distribution is PrY∼Lap(T/ε)[Y ≥ log(1/δ)Tε] = δ, then by applying a union bound over 2T samples we get the result.
Each ui involves at most T of these variables, and thus it satisfies maxi ui ≤ T 3

ε log(2/δ). Thus, |ni| ≥ 0 with
probability 1− δ for any i ∈ [k].

Theorem B.2. With respect to a single user being added or removed, the sizes of the padded bins |X ′
1| = x1 +

n1, . . . , |X ′
k| = xk + nk satisfy (ε, δ)-DP when n1, . . . , nk are drawn from ComputeDummyCounts.

7

Algorithm 2 ComputeDummyCounts, Algorithm for adding dummy users to bins with non-negative continual obser-
vation.

1: Input: k number of bins, privacy parameters ε, δ
2: Output: Bins with dummy users added for privacy.
3: T ← ⌊log2 k⌋+ 1 ▷ depth of the binary tree
4: for i = 1, . . . , T do
5: for j = 1, . . . , 2i−1 do
6: Sample ηj,i ∼ Lap(Tε)
7: end for
8: end for
9: for i = 1, . . . , k do ▷ For each bin, compute dummy users

10: Let (b1, . . . , bT) be binary representation of i
11: ui ←

∑
j:bj=1 η⌊i/2T−j⌋,j

12: ni ← 1
εT

3 log(2/δ) + ui − ui−1

13: if ni < 0 then
14: return "Fail"
15: end if
16: end for
17: Return n1, . . . , nk

Algorithm 3 FormIntervals

Input. X,Q,B, ε, δ
1: for j = 1 to m do
2: M← protocol for CDF estimation with max absolute error α under (ε, δ)-shuffle DP (Theorem A.1)
3: c2j−1 ← c s.t.M([0, c)) ∈ [qj − 2α, qj − α]
4: c2j ← c s.t.M([0, c)) ∈ [qj + α, qj + 2α]
5: end for
6: Define Ij = [ci−1, ci) for j = 1 to 2m+ 1 with c0 = 0 and c2m+1 = B.

Output. I1, . . . , I2m+1 ▷ This is a partitioning of [B]

Proof. Conditioned on no fails occurring, the sizes are the set of consecutive differences of continual observation
applied to xi+ni. Thus, as the addition of T 3

ε log(2/δ) is a post processing step, the sizes satisfy (ε, 0)-DP by standard
analysis of the continual counting mechanism [7]. The final privacy guarantee holds from the probability δ of a fail.

Theorem B.3. With probability at least 1− δ,∣∣∣∣∣∣
i∑

j=1

ni −
i

ε
T 3 log(2/δ)

∣∣∣∣∣∣ ≤ 1

ε
T 3 log(2/δ)).

for all 1 ≤ i ≤ k and T = ⌊log2 k⌋+ 1.

Proof. For any j ∈ [k], by construction, the left hand side is equal to |uj | which is the sum of at most T Laplace
random variables with maximum error T 2

ε log(2/δ). Thus the claim follows.

C Implementation Details of Main Algorithm

In this section, we describe the secure implementation of the subroutines of ΠQuant (Algorithm 1). The first subroutine,
FormIntervals, first uses local differential privacy and a secure shuffle to estimate the cumulative distribution function
of X , which can be used to estimate rankX(z) =

∑n
i=1 1[xi ≤ z] within error Õ(log

2(B)
ε) by Theorem A.1. We can

then query the CDF to form intervals I1, . . . , I2m+1 which partition the data domain [B], such that I2j corresponds to
quantile qj and is guaranteed, by the assumption that |qi − qj | ≥ Ω̃(log

2 B
εn), to have at most O(log

2(B)
ε) elements of

[X] in it. This process is shown in Algorithm 3.

Once the intervals are computed, the servers interact with the users again to form the buckets Xj = {x ∈ X : x ∈ Ij}.
We denote this subroutine by FormBuckets. To do so, the servers query the users’ data xi together with an index bi

8

Algorithm 4 FormBuckets

Input.[X] of length n, intervals I1, . . . , I2ℓ+1, parameters ε, δ, B
1: S = ∅
2: for i = 1 to n do
3: Collect ([xi], [bi]) from user i, where bi is the index where xi ∈ Ibi .
4: S = S ∪ {([xi], [bi])}
5: end for
6: Servers a ∈ {0, 1} sample na

0 , n
a
1 , . . . , n

a
2ℓ+1 ∼ ComputeDummyCounts(2ℓ+ 1, ε)

7: Servers a ∈ {0, 1} initializes Sa to be na
0 users with data ([min I1], 1)

8: for b = 1 to 2ℓ+ 1 do
9: Server 0 computes shares for n0

b users with data ([min Ib], [b])
10: Add shares to Sa

11: end for
12: Server 1 adds to S1 similarly
13: Servers send shares for S0, S1 to each other.
14: Securely shuffle S = [S] ∪ [S0] ∪ [S1]
15: Reveal bs for 1 ≤ s ≤ |S|

Output [X ′
1], . . . , [X

′
ℓ] where [Xj] = {[xs] : bs ∈ I2j}

such that xi ∈ Ibi . The users send these data with secret sharing. The servers could form each Xj by shuffling the
responses, then revealing the bi. However, while this would leak nothing about the xi, it would leak the sizes of Xj ,
which are sensitive values.

To fix this, the servers first add a random number nj of dummy users in each interval Ij . The nj are drawn using continual
counting so that they are non-negative and so that the partial sums

∑i
j=1 nj are concentrated—see Theorem B.3. This

allows quantiles to be accurately renormalized later. Each server independently samples and adds dummy users, which
ensures that sufficient noise for differential privacy is present even when one server behaves maliciously.

This process appears in Algorithm 4.

Having formed data buckets [Xj] such that [X2j] corresponds to quantile qj , the final step is to run the exponential
mechanism on [X2j] to produce a quantile. Within bucket X2j , the quantile q̃j corresponding to quantile qj in all of X

is q̃j =
nqj−

∑2j−1
i=1 |Xi|

|X2j | . Accounting for the dummy users added to the system, it is

q̃j =
qjn−

∑j−1
i=1 |Xj |+ j log3(2m) log(1/δ)

ε

|Xj |
.

Thus, the exponential mechanism is run on the data [Xj] with quantile q̃j . It returns an element z ∈ [B] with probability
exp(−εnerrXj ,q̃j (z)/2), which satisfies ε-DP because the sensitivity of errXj ,q̃j (z) is 1

n . Our implementation uses
the observation that errX,q̃(z) = | 1n i− q̃| for all z ∈ x(i), x(i+1). Thus, if we securely sort [Xj], then the exponential
mechanism can be run on the intervals [x(0), x(1)), . . . , [x(t), x(t+1)) where t = |Xj | and x(0) = 0 and x(t+1) = B. If
each interval is chosen with probability proportional to (x(i+1) − x(i))| 1n i− q̃| and then a uniformly random integer
from the interval is returned, this is an equivalent sampling procedure as the exponential mechanism. We show our
implementation of this, EMSingle, in Algorithm 5. Crucially, the algorithm keeps all its data secret shared except for
the final revealed sample, and only requires O(|Xj |) secret-shared operations to do this.

Having put all the pieces together, we may then analyze the running time of AlgMPCQuantile

Theorem C.1. AlgMPCQuantile takes O(k + log(B)2) user-side operations, O(nk log(B)3) plaintext server-side
operations, and O(k log2(B)

ε log log(B)) server-side secret share operations.

Proof. The user-side computations follow from the fact that each user runs local DP on their data logB times, each
taking O(log(B)) time [16]. Additionally, they must compute which interval they belong to, requiring an addi-
tional O(k) time. Server-side, computing the c.d.f. of the data in FormIntervals requires O(nk log(B)3) server-side
plaintext computations [16]. The next step, FormBuckets, uses O(n) plaintext computations. Then, EMSingle
takes O(|X2j | log(|X2j |)) secret-shared computations accounting for initially sorting the data. This is at most
O(log

2(B)
ε log log(B)) accounting for the upper bound on the size of |X2j |. Thus, the total number of operations

is O(n+ k log2(B)
ε log log(B)).

9

Algorithm 5 EMSingle

Input. [X] (in sorted order), quantile q, ε, δ, B
1: Servers insert [x0] = 0 and [xn+1] = B.
2: for i = 1 to n+ 1 do
3: [li] = [xi − xi−1] (Interval lengths)
4: [pi] = exp(− ε

2 |i− qn|) ∗ [li]
5: end for
6: [P] =

∑n
i=1[pi]

7: Generate [u] ∼ [0, 1]
8: Compute [r] = [u ∗ P]
9: Use linear scan to find [i] such that [pi−1] ≤ [r] ≤ [pi]

10: Generate [u′] ∼ [0, 1]
11: Compute [ans] = [xi−1] + truncate(u′ ∗ [xi − xi−1]) ▷ Indexing at [i] can be implemented with linear scan.
12: return ans in the clear

D Privacy and Utility Analysis for ΠQuant

Theorem D.1. With respect to adding or removing an element from X ,MQuant satisfies (ε1 + ε2 + ε3, δ1 + δ2)-DP.

Proof. The output z1, . . . , zm satisfies ε3-DP from the exponential mechanism and parallel composition. The output∑j
i=1 |X̂i|, |X̃1|, |X̃2|, . . . , |X̃k| satisfies (ε2, δ2)-DP from Theorem B.2, where the initial sum can be made independent

of the rest of the counts by adding an extra X0 ∼ ln(1/δ)
ε + Lap(1ε) users to the first bin (creating a negligible change

in utility). Finally, the privacy of the release (yπ(1), . . . , yπ(n) satisfies (ε1, δ1)-DP by Theorem A.1. The total privacy
guarantee follows from composition.

For utility, we have the following guarantee.

Theorem D.2. For any input X ∈ [B]n, if both servers follow the protocolMQuant, with probability at least 0.8, all
estimated quantile z1, . . . , zm satisfy

errX,q(z) ≤ O

(
log(mB)

ε3n
+

log3(m) log(1δ)

ε2n

)
.

Proof. Our proof consists of arguing that each q̃j quantile in X̃j is close to the qj th quantile in Xj , combined with the
utility of the exponential mechanism. The second part is straightforward; by a standard argument such as that in [18],
since the output size is bounded by B, the exponential mechanism is guaranteed to return a zj such that

errX̃j ,q̃j
(zj) ≤ O

(
log(mB)

|X̃j |ε3

)

for each 1 ≤ j ≤ m, with probability at least 1
10 . Let rankX(z) =

∑
x∈X 1[x ≤ z]. We have

|X̃j |errX̃j ,q̃j
(zj) = |q̃j |X̃j | − rankX̃j

(zj)|
|X|errX,qj (zj) = |qj |X| − rankX(zj)|

Therefore, we have

|X|errX,qj (zj)− |X̃j |errX̃j ,q̃j
(zj) ≤

∣∣∣q̃j |X̃j | − qj |X| − rankX̃j
(zj) + rankX(zj)

∣∣∣
=

∣∣∣∣∣qjn−
∑j−1

i=1 |X̃i|+ 2jc0

|X̃j |
|X̃j | − qj |X| − rankXj

(zj)− nj + rankX(zj)

∣∣∣∣∣
=

∣∣∣∣∣−
j−1∑
i=1

|X̃i|+ 2jc0 − rankXj
(zj)− nj + rankX(zj)

∣∣∣∣∣ .
10

Suppose that min(Xj) ≤ zj ≤ max(Xj). We have that rankXj (zj) +
∑j−1

i=1 |Xj | = rankX(zj), and the above sum
reduces to ∣∣∣∣∣−

j−1∑
i=1

(|Xi|+ ni) + 2jc0 − nj +

j−1∑
i=1

|Xj |

∣∣∣∣∣ =
∣∣∣∣∣2jc0 −

j∑
i=1

ni

∣∣∣∣∣ .
By Theorem B.3, we know the last sum is at most 4 log(m)3 log(1

δ)

ε2
with probability at least 1− δ, and thus we have

errX,qj (zj) ≤
1

|X|
|X̃j |errX̃j ,q̃j

(zj) +
1

|X|
O

(
log(m)3

ε2

)
≤ O

(
log(mB)

nε3

)
+O

(
log(m)3

nε2

)
.

Finally, we show that min(Xj) ≤ zj ≤ max(Xj). It is sufficient to show q̃j ∈ [β, 1 − β], with β = log(mB)

|X̃j |ε2
. This

follows by construction, as

qjn−
j−1∑
i=1

|Xi| ∈
[
log(m)3

ε2
+

log(mB)

ε3
, |Xj | −

log3(m)

ε2
− log(mB)

ε3

]

⇒ qjn−
j−1∑
i=1

|X̃i|+ 2jc0 ∈
[
log(mB)

ε3
, |Xj | −

log(mB)

ε3

]
⇒ q̃j |X̃j | ∈

[
log(mB)

ε3
, |X̃j | −

log(mB)

ε3

]
,

and the claim follows since
∣∣∣zj − q̃j |X̃j |

∣∣∣ ≤ log(mB)
ε2

from the error guarantee.

E Functionality with Leakage

Definition E.1. (Functionality with leakage). Let F̂ = (F̂1, F̂2) = ((F1,L1), (F2,L2)) be a two-party functionality.
Let F = (F1,F2) and L = (L1,L2). We say that a two-party protocol Π securely implements F with leakage L, if for
each b ∈ {1, 2} there exists a probabilistic polynomial-time algorithm Simb such that for all x1 ∈ X1, x2 ∈ X2 the
output of Simb((xb, F̂b(x1, x2)),F(x1, x2)) is computationally indistinguishable from (V iewb

Π(x1, x2),Π(x1, x2)).
We call F̂ the functionality with leakage.

Proof. The proof of Thm. 4.1 follows from standard arguments in the (FShuffle,FSort) hybrid model [19] where
FShuffle(FShuffle) represents the ideal functionality for secure shuffle (sort).

11

	Introduction
	Background
	Cryptographic Primitives
	Differential Privacy

	Proposed Protocol
	Naive Approach under MPC
	Our Approach

	Formal Analysis
	Related Work
	Quantile Estimation under LDP
	Omitted Details on Continual Observation
	Implementation Details of Main Algorithm
	Privacy and Utility Analysis for Quant
	Functionality with Leakage

