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Abstract

Estimating the geometric median of a dataset is a robust counterpart to mean estimation, and
is a fundamental problem in computational geometry. Recently, [HSU24] gave an (ϵ, δ)-differentially
private algorithm obtaining an α-multiplicative approximation to the geometric median objective,
1
n

∑
i∈[n] ∥· − xi∥, given a dataset D := {xi}i∈[n] ⊂ Rd. Their algorithm requires n ≳

√
d · 1

αϵ

samples, which they prove is information-theoretically optimal. This result is surprising because its
error scales with the effective radius of D (i.e., of a ball capturing most points), rather than the
worst-case radius. We give an improved algorithm that obtains the same approximation quality,
also using n ≳

√
d · 1

αϵ
samples, but in time Õ(nd + d

α2 ). Our runtime is nearly-linear, plus the
cost of the cheapest non-private first-order method due to [CLM+16]. To achieve our results, we
use subsampling and geometric aggregation tools inspired by FriendlyCore [TCK+22] to speed up
the “warm start” component of the [HSU24] algorithm, combined with a careful custom analysis of
DP-SGD’s sensitivity for the geometric median objective.

1 Introduction
The geometric median problem, also known as the Fermat-Weber problem, is one of the oldest problems
in computational geometry. In this problem, we are given a dataset D = {xi}i∈[n] ⊂ Rd, and our goal is
to find a point x⋆ ∈ Rd that minimizes the average Euclidean distance to points in the dataset:

x⋆ ∈ arg min
x∈Rd

fD(x), where fD(x) :=
1

n

∑
i∈[n]

∥x− xi∥. (1)

This problem has received widespread interest due to its applications in high-dimensional statistics.
In particular, the geometric median of a dataset D enjoys robustness properties that the mean (i.e.,
1
n

∑
i∈[n] xi, the minimizer of 1

n

∑
i∈[n] ∥x− xi∥2) does not. For example, it is known (cf. Lemma 24,

[CLM+16]) that if greater than half of D lies within a distance r of some x̄ ∈ Rd, then the geometric
median lies within O(r) of x̄. Thus, the geometric median provides strong estimation guarantees even
when D contains outliers. This is in contrast to simpler estimators such as the mean, which can be
arbitrarily corrupted by a single outlier. As a result, studying the properties and computational aspects
of the geometric median has a long history, see e.g., [Web29, LR91] for some famous examples.

In this paper, we provide improved algorithms for estimating (1) subject to (ϵ, δ)-differential privacy,
the de facto notion of provable privacy in modern machine learning. Privately computing the geometric
median naturally fits into a recent line of work on designing DP algorithms in the presence of outliers. To
explain the challenge of such problems, the definition of DP implies that the privacy-preserving guarantee
must hold for worst-case datasets. This stringent definition affords DP a variety of desirable properties,
most notably composition of private mechanisms (cf. [DR14], Section 3.5). However, it also begets
challenges: for example, estimating the empirical mean of D subject to (ϵ, δ)-DP necessarily results in
error scaling ∝ R, the diameter of the dataset (cf. Section 5, [BST14]). Moreover, the worst-case nature
of DP is at odds with typical average-case machine learning settings, where most (or all) of D is drawn
from a distribution that we wish to learn about. From an algorithm design standpoint, the question
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follows: how do we design methods that provide privacy guarantees for worst-case data, but also yield
improved utility guarantees for (mostly) average-case data?

Such questions have been successfully addressed for various statistical tasks in recent work, including
parameter estimation [BD14, KV17, BKSW19, DFM+20, BDKU20, BGS+21, AL22, LKJO22, KDH23,
BHS23], clustering [NRS07, NSV16, CKM+21, TCK+22], and more. However, existing approaches for
estimating (1) (even non-privately) are based on iterative optimization methods, as the geometric median
does not admit a simple, closed-form solution. Much of the DP optimization toolkit is exactly plagued by
the aforementioned “worst-case sensitivity” issues, e.g., lower bounds for general stochastic optimization
problems again scale with the domain size. This is troubling in the context of (1), because a major
appeal of the geometric median is its robustness: its error should not be significantly affected by any
small subset of the data. Privately estimating the geometric median thus poses an interesting technical
challenge, beyond its potential appeal as a subroutine in downstream robust algorithms.

To explain the distinction between worst-case and average-case error rates in the context of (1), we
introduce the following helpful notation: for all quantiles τ ∈ [0, 1], we let

r(τ) := argmin
r≥0

∑
i∈[n]

I∥xi−x⋆∥≤r ≥ τn

 , where x⋆ := arg min
x∈Rd

1

n

∑
i∈[n]

∥x− xi∥ , (2)

when D = {xi}i∈[n] ⊂ Rd is clear from context. In other words, r(τ) is the smallest radius describing
a ball around the geometric median x⋆ containing at least τn points in D. We also use R to denote
an a priori overall domain size bound, where we are guaranteed that D ⊂ Bd(R). Note that in general,
it is possible for, e.g., r(0.9) ≪ R if ≈ 10% of D consists of outliers with atypical norms. Due to the
robust nature of the geometric median (i.e., the aforementioned Lemma 34, [CLM+16]), a natural target
is estimation error scaling with the “effective radius” r(τ) for some quantile τ ∈ (0.5, 1). This is a much
stronger guarantee than the error rates ∝ R that typical DP optimization methods give.

A simple argument based on Markov’s inequality shows r(τ) = O(fD(x⋆)) for all τ < 1. Thus, in this
introduction our goal will be to approximate the minimizer of (1) to additive error αfD(x⋆) for some
α ∈ (0, 1), i.e., to give α-multiplicative error guarantees on optimizing fD.1 Again, datasets with outliers
may have fD(x⋆)≪ R, so this goal is beyond the reach of naïvely applying DP optimization methods.

In a recent exciting work, [HSU24] bypassed this obstacle and obtained such private multiplicative
approximations to the geometric median, and with near-optimal sample complexity. Assuming that D
has size n ≳

√
d· 1

αϵ ,
2 [HSU24] gave two algorithms for estimating (1) to α-multiplicative error. They also

proved a matching lower bound, showing that this many samples is information-theoretically necessary.3
From both a theoretical and practical perspective, the main outstanding question left by [HSU24] is
that of computational efficiency: in particular, the [HSU24] algorithms ran in time Õ(n2d + n3ϵ2) or
Õ(n2d + nd2 + d4.372). This leaves a significant gap between algorithms for privately solving (1), and
their counterparts in the non-private setting, where [CLM+16] showed that (1) could be approximated
to α-multiplicative error in nearly-linear time Õ(min(nd, d

α2 )).

1.1 Our results
Our main contribution is a faster algorithm for privately approximating (1) to α-multiplicative error.

Theorem 1. Let D = {xi}i∈[n] ⊂ Bd(R) for R > 0, 0 < r ≤ r(0.9), and (α, ϵ, δ) ∈ [0, 1]3. There is an
(ϵ, δ)-DP algorithm that returns x̂ such that with probability ≥ 1− δ, fD(x̂) ≤ (1 + α)fD(x⋆), assuming
n ≳

√
d

αϵ . The algorithm runs in time Õ(nd+ d
α2 ).

To briefly explain Theorem 1’s statement, it uses a priori knowledge of 0 < r < R such that R upper
bounds the domain size of D, and r lower bounds the “effective radius” r(0.9). However, its runtime only

1Our results, as well as those of [HSU24], in fact give stronger additive error bounds of αr(τ) for any fixed τ ∈ (0.5, 1).
2In this introduction only, we use Õ,≲,≳ to hide polylogarithmic factors in problem parameters, i.e., d, 1

α
, 1

ϵ
, 1

δ
, and

R
r

, where D ⊆ Bd(R) and r ≤ r(0.9).
3Intuitively, we require α ≈ d−1/2 to obtain nontrivial mean estimation when D consists of i.i.d. Gaussian data (as a

typical radius is ≈
√
d), matching known sample complexity lower bounds of ≈ d

ϵ
for Gaussian mean estimation [KLSU19].
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depends polylogarithmically on the aspect ratio R
r , rather than polynomially (as naïve DP optimization

methods would); we also remark that our sample complexity is independent of R
r .

The runtime of Theorem 1 is nearly-linear in the regime n ≳ 1
α2 (e.g., if

√
d · 1ϵ ≳ 1

α ), but more generally
it does incur an additive overhead of d

α2 . This overhead matches the fastest non-private first-order
method for approximating (1) to α-multiplicative error, due to [CLM+16]. We note that [CLM+16] also
gave a custom second-order interior-point method, that non-privately solves (1) in time Õ(nd), i.e., with
polylogarithmic dependence on 1

α . We leave removing this additive runtime term in the DP setting, or
proving this is impossible in concrete query models, as a challenging question for future work.

Our algorithm follows a roadmap given by [HSU24], who split their algorithm into two phases: an initial
“warm start” phase that computes an O(1)-multiplicative approximation of the geometric median, and
a secondary “boosting” phase that uses iterative optimization methods to improve the warm start to
an α-multiplicative approximation. The role of the warm start is to improve the domain size of the
boosting phase to scale with the effective radius. However, both the warm start and the boosting phases
of [HSU24] required superlinear ≈ n2d time. Our improvement to the warm start phase of the [HSU24]
is quite simple, and may be of independent interest, so we provide a self-contained statement here.

Theorem 2. Let D = {xi}i∈[n] ⊂ Bd(R) for R > 0, 0 < r ≤ r(0.9), and (ϵ, δ) ∈ [0, 1]2. There is an
(ϵ, δ)-DP algorithm that returns x̂ such that with probability ≥ 1 − δ, fD(x̂) = O(fD(x⋆)), assuming
n ≳

√
d
ϵ . The algorithm runs in time Õ(nd).

1.2 Our techniques
As discussed previously, our algorithm employs a similar framework as [HSU24]. It is convenient to
further split the warm start phase of the algorithm into two parts: finding an estimate r̂ of the effective
radius of D, and finding an approximate centerpoint at distance O(r̂) from the geometric median x⋆.

Radius estimation. Our radius estimation algorithm is almost identical to that in [HSU24], Section
2.1, which uses the sparse vector technique (cf. Theorem 3.23, [DR14]) to detect the first time an estimate
r̂ is such that most points have ≥ 3

4 of D at a distance of ≈ r̂. The estimate r̂ is geometrically updated
over a grid of size O(log(Rr )). Naïvely implemented, this strategy takes ≳ n2d time due to the need for
pairwise distance comparisons; even if dimesionality reduction techniques are used, this step appears to
require Ω(n2) time. We make a simple observation that a random sample of ≈ log( 1δ ) points from D
is enough to determine whether a given point has ≫ β neighbors, or ≪ γ, for appropriate (constant)
quantile thresholds β, γ, which is enough to obtain an Õ(nd) runtime.

Centerpoint estimation. Our centerpoint estimation step departs from [HSU24], Section 2.2, who
analyzed a custom variant of DP gradient descent with geometrically-decaying step sizes. We make the
simple observation that directly applying the FriendlyCore algorithm of [HSU24] yields the same result.
However, the standard implementation of FriendlyCore again requires Ω(n2) time to estimate weights for
each data point. We again show that FriendlyCore can be sped up to run in Õ(nd) time (independently
of R

r ) via weights estimated through subsampling. Our privacy proof of this subsampled variant is subtle,
and based on an argument that couples our algorithm to an idealized algorithm that never fails to be
private. We use this to account for the privacy loss due to the failure of our subsampling, i.e., if the
estimates are inaccurate. We note that the [HSU24] algorithm for this step already ran in nearly-linear
≈ nd log(Rr ) time, so we obtain an asymptotic improvement only if R

r is large.

Boosting. The most technically novel part of our algorithm is in the boosting phase, which takes
as input a radius and centerpoint estimate from the previous steps, and outputs an α-multiplicative
approximation to (1). Like [HSU24], we use iterative optimization methods to implement this phase.
However, a major bottleneck to a faster algorithm is the lack of a nearly-linear time DP solver for non-
smooth empirical risk minimization (ERM) problems. Indeed, such Õ(1)-pass optimizers are known only
when the objective is convex and sufficiently smooth [FKT20], or n ≳ d2 samples are taken [CJJ+23].
This is an issue, because while computing the geometric median (1) is a convex ERM problem, it is
non-smooth, and nontrivial multiplicative guarantees are possible even with n ≈

√
d samples.

3



We give a custom analysis of DP-SGD, specifically catered to the (non-smooth) ERM objective (1).
Our main contribution is a tighter sensitivity analysis of DP-SGD’s iterates, leveraging the structure
of the geometric median. To motivate this observation, consider coupled algorithms with iterates z, z′,
both taking gradient steps with respect to the subsampled function ∥· − xi∥ for some dataset element
xi ∈ D. A simple calculation shows these gradients are unit vectors u, u′, in the directions of z − xi

and z′ − xi respectively. It is not hard to formalize that updating z ← z − ηu and z′ ← z′ − ηu′ is
always contractive, unless z, z′ were both already very close to xi (and hence, each other) to begin with.
We use this structural result to inductively control DP-SGD’s sensitivity, which lets us leverage a prior
reduction from private optimization to stable optimization [FKT20].

Our result is the first we are aware of that obtains a nearly-linear runtime for DP-SGD on a structured
non-smooth problem. We were inspired by [ALT24], who also gave faster runtimes for (smooth) DP
optimization problems with outliers under further assumptions on the objective. We hope that our work
motivates future DP optimization methods that harness problem structure for improved rates.

1.3 Related work
Differentially private convex optimization. Differentially private convex optimization has been
studied extensively for over a decade [CM08, KST12, BST14, KJ16, BFGT20, FKT20, BGN21, GLL22,
GLL+23] and inspired the influential DP-SGD algorithm widely adopted in deep learning [ACG+16].
In the classic setting, where functions are assumed to be Lipschitz and defined over a convex domain
of diameter R, optimal rates have been achieved with linear dependence on R [BFTGT19]. Recent
years have seen significant advancements in optimizing the gradient complexity of DP stochastic convex
optimization [FKT20, AFKT21, KLL21, ZTC22, CJJ+23, CCGT24]. Despite these efforts, a nearly-
linear gradient complexity has only been established for sufficiently smooth functions [FKT20, ZTC22,
CCGT24] and for non-smooth functions [CJJ+23] when the condition

√
n ≳ d is satisfied.

Differential privacy with average-case data. Adapting noise to the inherent properties of data,
rather than catering to worst-case scenarios, is critical for making differential privacy practical in real-
world applications. Several important approaches have emerged in this direction: smooth sensitivity
frameworks [NRS07] that refine local sensitivity to make it private; instance optimality techniques [AD20]
that provide tailored guarantees for specific datasets; methods with improved performance under dis-
tributional assumptions such as sub-Gaussian or heavy-tailed i.i.d. data [CWZ21, AL23, ALT24]; and
data-dependent sensitivity computations that adapt during algorithm execution [ATMR21]. These ap-
proaches collectively represent the frontier in balancing privacy and utility beyond worst-case analyses.
We view our work as another contribution towards this broader program.

1.4 Full version
This is an extended abstract meant for presentation at TPDP 2025. A full version of this paper, complete
with all proofs and an empirical evaluation, will be posted on arXiv by the date of the workshop.
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