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ABSTRACT
We propose a general framework for differentially private confidence interval estimation. Our
approach takes any differentially private estimator of any arbitrary quantity as a black box, and
from it constructs differentially private non-parametric confidence intervals of that quantity. In fact,
our method produces a full CDF estimation of the private statistic. Our approach uses privacy
amplification to leverage the randomness that naturally arises from common subsampling and

bootstrapping techniques. Under mild assumptions, the quality of our estimator is asymptotically

equivalent to its non-private counterpart, as long as the dataset size n = (2 (%) , and we show

promising initial numerical results that support that claim.

1 Introduction

Confidence interval (CI) estimation is a fundamental aspect of statistical analysis, crucial for quantifying estimator
uncertainty and facilitating hypothesis testing. Given a significance level v € (0, 1), a valid confidence interval includes
the true quantity of interest w.p. > 1 — . In parametric scenarios where the underlying distribution of the statistic is
known, ClIs can be derived from distribution parameters, which are estimated from a sample. In such cases, differentially
private CIs can be derived from a private estimator of this parameter in a relatively straightforward manner [9, [12} [18]].
In the non-parametric setting, however, where minimal assumptions (if any) are made about the distribution (e.g.,
bounded range or moments), such approaches are not applicable. If the distribution of the statistic approaches a known
parametric limiting distribution (e.g., a normal distribution), CIs can be derived by estimating its parameters, which
can also be done privately [[18]. In absence of a convenient limiting distribution, CIs can sometimes be constructed
for specific quantities when their CI can be expressed as another parameter which can be empirically estimated. For
example, Drechsler et al. [8] provide non-parametric DP Cls for the median by directly estimating other quantiles.

Another approach to non-private Cls relies on resampling methods, such as bootstrapping (sampling with
replacement), initially introduced by Efron [[10]. These methods offer convergence rates comparable (and even
superior in some cases) to normal approximation and similar techniques. However, sampling with replacement implies
each element might participate in the resampled dataset more than once, increasing the query’s sensitivity to changing a
single element, adversely affecting the privacy-accuracy tradeoff. Brawner and Honaker [3] try to get around this with a
variant of bootstrapping where the maximal number of times each element can be sampled is bounded by In(In(n))
w.h.p., and so the statistical guarantees are nearly identical to classical bootstrapping. Unfortunately, while the bound on
the number of appearances is nearly constant, this still leads to a blowup in the sensitivity, and a proportional increase
in the privacy parameter €.

An alternative technique for mitigating the effect of high sensitivity is the sub-sample and aggregate framework [[14],
where the dataset is split into disjoint subsets, each one is used to produce a non-private output, and those outputs are
aggregated in a private manner. In recent years, a technique known as Bag-of-Little-Bootstrap (BLB), proposed in 2014
by Kleiner et al. [13]], has emerged as a valuable tool for bootstrapping large databases and has found application in DP
estimation [[7,16]. It relies on bootstrapping samples of the original size from each subset, to construct a non-private CI.
Importantly, these methods do not require a private estimator of the target quantity.



1.1 Our proposal

Our method also relies on resampling, but takes a different path. We avoid the pitfall of increased sensitivity by using
smaller subsets, and using a private estimator allows us to make use of all estimated statistics. Given a dataset of size n,
we propose subsampling (without replacement) [15] or bootstrapping [4] T subsets of size m < n, and then using a
DP mechanism on each subset to obtain 7" statistics. Combining DP’s composition and amplification-by-subsampling
properties, this results in a private estimation of the CDF of the (private estimation of the) statistics on a dataset of size
m. Any post-processing of this CDF to a CI retains privacy, and unlike the BLB method it provides private CIs for all
significance levels simultaneously.

While privacy amplification is known for sampling both with and without replacement, privacy guarantees for
sampling with replacement are comparable to those of sampling without replacement only in the m < n regime [2].
In this regime, statistical analysis of these two sampling methods is nearly identical, so this work focuses mainly on
subsampling without replacement. Composition of the privacy guarantees over the 7' subsamples can be done using
either basic or advanced composition. If the private estimator of the statistic is pure-DP (§ = 0), basic composition
results in pure-DP Cls.

Our statistical analysis relies on the commonly used assumptions that, under some standardization, the statistic’s
limiting distribution is normal. This applies, for example, to bounded linear queries (via the CLT). We also rely on the
error induced by the private estimator being dominated by the statistical noise for sufficiently large sample sizes. This
assumption holds for many mechanisms (e.g., Laplace/Gaussian noise addition to linear queries), where the sampling
error of a statistic over a dataset of size n is O (%L), while the error induced by the private mechanism is O (-1 ).
By balancing the subset size m and number of subsets 7" and lower bounding n = (2 (%), we can ensure the
asymptotic error of our technique approaches those of its non-private version as the sample size n grows.

2 Algorithm description

In this section, we present our main proposal for constructing confidence intervals. We have two sampling methods,
with or without replacement: bootstrapping and subsampling. Denote by Y; the output of the private mechanism applied
on the ith subsample, and by Y the average of all Y;. We propose to construct confidence intervals at a 1 — v significance
level based on one of two methods. The first is normal approximation, that is,
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where Z;_., 5 is the inverse CDF of the standard Gaussian distribution at the point 1 — /2, and C' is some extrapolation

factor that depends on the sampling method. For example, when using subsampling, Shao and Wu [[L6] show that taking

C = - gives a consistent estimator of the SD. The extrapolation factor is needed since we estimate from a sample of

size m and not n, and different assumptions invite different extrapolations that depend on the non-private mechanism.
The second method, the quantile method, uses the quantiles of the empirical distribution of the estimator,
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where }71, e }7T are the sorted values of Y7, ..., Y7, and C' is some extrapolation factor. Y can also be replaced by the
median of (Y7, ..., Y7) to get more stable results.

Definition 2.1 (PrivSub,, ,, 7(M)). Given a dataset X € R™**, a subsample size m € N, and number of subsamples
T € N, the algorithm PrivSub,, y, (M), gets a DP mechanism M € M : X™ — R, samples T subsamples without
replacement, and applies the DP mechanism on each subsample. Based on these estimates (which form a private CDF
of the estimator), we can constructs a confidence interval using one of two approaches: normal approximation (1)) or
the quantile method (2).

3 Asymptotic analysis

In this section, we provide an initial asymptotic analysis of privacy, validity, and accuracy. The technical results are
presented informally, emphasizing the intuition behind our analysis.



3.1 Privacy analysis

Our privacy analysis relies on privacy amplification by subsampling [2] to reduce privacy loss from each estimation by
approximately the ratio of the subset size to the full dataset size. Amplification by subsampling, in a nutshell, is based
on the idea that a differentially private mechanism run on a random subsample of a population provides higher privacy
guarantees than when run on the entire population. Advanced composition enables us to bound the privacy loss growth
by the square root of the number of subsamples.

Lemma 3.1. (informal) Given n,T € N; m € [n]; &, € (0,1], and a (¢,0)-DP M : X" — R, then
PrivSuby, m (M) is (€',6")-DP where &' = <m ws) and &' = Q(T'6) (by advanced composition).

n

Additionally, if § = 0, PrivSuby, (M) is (£”,0)-DP where £" = Q (TZ¢) (by basic composition).

The lemma relies on the fact that for small enough €, amplification by subsampling gives us that sampling a sample
of size m out of n without replacement gives privacy amplification of ¢’ = Q (%s) where ¢ is the original privacy
parameter [3, Theorems 9 and 10]. The analysis of § is more complex, where for subsampling, we have privacy
amplification of 7, and for bootstrapping, it requires more subtle analysis of the algorithm. From advanced composition
we have that for 7' samples, one pays ©(y/T) in €, and linearly in &, for § > 0. For our algorithm to be pure DP, basic
composition is required, and then ¢ scales linearly with 7.

3.2 Statistical analysis

The first step is to show that our proposed algorithm produces valid confidence intervals, that is, when n, m — oo and
T is sufficiently large, then the coverage probability of the confidence interval is at least 1 — -, where -y is the required
significance level. Notice that the distribution of the privately estimated statistic is a convolution of the underlying
distribution and additional randomness of the private mechanism. Assuming the error induced by the additional
randomness is negligible relative to the sampling error for sufficiently large sample size, it suffices to show that the CI
is valid when using non-private estimations of the statisticsﬂ This is standard for both standard-deviation-based CI
using normal approximation [16}[11], and quantile-based CI using subsampling [[15} 17} [19]].

Unlike validity, there are several possible accuracy definitions for a CI, such as its (expected) width, or tightness,
the extent to which the probability that the true quantity is in the CI exceeds 1 — . The accuracy analysis also depends
on the way the CI is constructed, and the sampling method. We provide a general claim that reduces the analysis of the
private CI’s accuracy to its non-private counterpart.

Lemma 3.2. Givenn € N, ¢ > ﬁ, a statistic with a normal limiting distribution, and a €-DP mechanism M for

estimating this statistic from a dataset of size n, if the mechanism’s sample error is O(n%) then the distribution error
of the mechanism’s output scales like O(1/+/n), which is asymptotically equivalent to the error of the non-private
estimator.

3.3 Combined analysis

Putting everything together, we have the following informal statement.

Theorem 3.3. (informal) Let ¢',6" € (0,1). If n = Q (ln(sl,/f,)), then for any T € N; m € [n] that satisfy

mT = O(n), and for any mechanism M satisfying (¢,0)-DP for e = Q (e’, /mln?l/é,)) and § = Q(8'/T), for
which the assumptions of Lemma 3.2 hold, we have that

1. Privacy: PrivSuby, ., (M) is (¢',0")-DP.

2. Validity: The confidence interval constructed from the output of PrivSub, ,, (M) is asymptotically valid.

3. Accuracy: The accuracy of the private CI is asymptotically identical to the non-private CI.

Proof. The first claim is a direct result of Lemma[3.1] The second claim can be proved with classical statistical methods,
as explained in Subsection [3.2] The third claim is the result of noting that the conditions of Lemma [3.2] hold; that is, the
perturbation error is at most the statistical error. [

Notice that while Part 3 of Theorem [3.3|bounds the error of the private CI by that of the non-private CI, that error
depends on m and T', and we do not provide a bound for the general case, that is, we only ensure that the sampling

'In fact, weaker assumptions suffice. For normal approximation we only need to assume the added randomness can be normally
approximated, and for the quantile method no additional assumption is needed.



error dominates the perturbation. For the non-private CI to be accurate, we typically choose m = (y/n). We further
argue that under normal approximation, it suffices that T = O(In(1/v)), which allows for m = ©(n), in which case

the error of the non-private CI is O (ﬁ) . We have not yet developed the full analysis of this point.

4 Initial numerical study

In this section we describe one of several numerical analyses we ran to support our results. Here we evaluate four CI
methods for the median of a normal distribution A/ (0, 22) truncated to the range [—6, 4], all relying on sampling m out
of n without replacement. The methods differ by the way each of the T" estimations were produced (using a private
mechanism or non-private estimation of the statistic) and the way the CI was derived from those estimations (quantile
or normal approximation). We additionally compare our results to the correct value (labeled “empirical results”), which
in the case of the coverage is the desired confidence level (0.9), and in the case of the width is the CI of the empirical
estimation using samples of size n.

As the private estimator we use the inverse sensitivity mechanism as implemented by Asi and Duchi [1]], and its
privacy parameter ¢’ was set such that PrivSub,, ,, 7 (M) is (g, §)-DP for the choice of m and T'. Optimizing these
parameters to ensure statistical validity and minimize CI width requires further research. We set 7" to be a constant
(200), and m to be O(y/n) ]

The left panel of the figure depicts the expected width of the CI in log-scale, to make it easier to compare the wide
range of values. We can see that the two non-private methods closely match the empirical one, which decreases as
1/4/n, while the private yield significantly wider CIs for small sample size but approach the non-private ones as n
grows. In the right panel we present the coverage of the four methods. We can see that the two non-private ones reach
the desired coverage, while the private ones have a somewhat higher coverage for small values of n.
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Figure 1: CI width and coverage of the four methods, with privacy budget ¢ = 4,6 = 105, n varying from 500 to
10, 000. The shaded area shows & one standard deviation around the estimate.

S Ongoing work

In this manuscript, we describe the main idea and some initial results of our framework for private non-parametric
confidence interval estimation. We are actively developing both theoretical and empirical consequences of this
framework. In particular, although our initial empirical results look promising and we have a sketch of a theoretical
argument regarding accuracy, we have more work to do to establish rigorous accuracy guarantees. One of the directions
we are still resolving is in optimizing the tradeoff between m and T to provide the best possible guarantees. Theorem
sketch 3.3 shows that the sample size has to be asymptotically larger than T - m, but this still leaves questions open
about the rates of m and 7T'. We also are working towards a more extensive numerical study, including comparison of
our proposed method with those of Drechsler et al. [§] and Chadha et al. [6].

The exact expression was m = max{50, min{5 - v/n,0.1 - n}}, since a very small m leads to large error estimations, and
when m/n is close to 1 the samples are strongly correlated.
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