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Abstract

Differential privacy (DP) auditing aims to provide empirical lower bounds on
the privacy guarantees of DP mechanisms like DP-SGD. While some existing
techniques require many training runs that are prohibitively costly, recent work
introduces one-run auditing approaches that effectively audit DP-SGD in white-box
settings while still being computationally efficient. However, in the more practical
black-box setting where gradients cannot be manipulated during training and only
the last model iterate is observed, prior work shows that there is still a large gap
between the empirical lower bounds and theoretical upper bounds. Consequently,
in this work, we study how incorporating approaches for stronger membership
inference attacks (MIA) can improve one-run auditing in the black-box setting.
Evaluating on image classification models trained on CIFAR-10 with DP-SGD,
we demonstrate that our proposed approach, which utilizes quantile regression
for MIA, achieves tighter bounds while crucially maintaining the computationally
efficiency of one-run methods.

1 Introduction

Differential privacy (DP) has become an effective, practical framework for specifying and ensuring
privacy guarantees of statistical algorithms, including stochastic gradient descent (DP-SGD) for
training large models privately. While DP provides an upper bound on the privacy guarantee ε of the
algorithm, it is useful to additionally have a lower bound on ε to validate it in practice and potentially
detect errors in implementations [Tramer et al., 2022]. This lower bound is derived empirically
through privacy auditing.

DP Auditing often requires training a model hundreds—if not thousands—of times, inducing heavy
computational requirements that simply don’t scale when auditing larger models [Tramer et al.,
2022]. These costs are further exacerbated by the computational costs of calculating per-example
gradients in DP-SGD. Despite recent advancements in computational efficiency [Nasr et al., 2023],
multiple-run auditing still incurs overheads that can lead to prohibitively costly experiments [Muthu
Selva Annamalai and De Cristofaro, 2024]. In light of these problems, Steinke et al. [2023] introduce
a new framework requiring only a single run. Framed as a guessing game, the goal is to identify
among a set of “canary” examples the ones that were seen during training. If one is able to make
more guesses correctly, then one can establish higher empirical lower bounds on ε.

We view these types of guessing games for DP auditing as a form of membership inference [Shokri
et al., 2017], where the goal is determine if a given sample was used in training a machine learning
model. However, Steinke et al. [2023] and Mahloujifar et al. [2024] introduce and evaluate their

∗Order alphabetically by last name.



auditing schemes using only the simplest strategy for MIA, which can be summarized as looking at
some score function (i.e., loss of the canary) and sorting (i.e., predicting that it was used in training
if the loss is small and vice versa). We posit, however, that in applying this naive strategy, these
auditing procedures may underestimate the empirical lower bounds for DP-SGD.

Contributions. In this work, we evaluate to what extent using strong MIA methods for privacy
auditing in the one-run setting can tighten empirical privacy estimates. Given that the purpose of
such one-run auditing procedures is to assess privacy mechanisms while maintaining efficiency, we
specifically adopt approaches for MIA introduced in Bertran et al. [2023], who introduce a class
of attacks that compete with state-of-the-art shadow model approaches [Shokri et al., 2017, Carlini
et al., 2022] for MIA while being computationally efficient (i.e., also require one training run). We
consider the black-box setting for auditing, where the auditor can only access the model at the
final training step. Evaluating on image classification models trained on CIFAR-10 using DP-SGD,
we demonstrate that MIA significantly improves empirical lower bounds estimated from one-run
procedures introduced by Steinke et al. [2023] and Mahloujifar et al. [2024]. Furthermore, we find
that the advantage holds across a wide range of data settings (i.e., the number of training examples
and proportion of canaries inserted into training).

2 Preliminaries

Definition 2.1 (Differential Privacy (DP) [Dwork et al., 2006]). A randomized algorithm M : XN →
R satisfies (ε, δ)-differential privacy if for all neighboring datasets D,D′ and for all outcomes S ⊆ R
we have

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ

To audit models trained using differentially privacy SGD (DP-SGD), we consider the following
“one-run” auditing procedures:

1. Steinke et al. [2023]. Steinke et al. [2023] first developed the notion of auditing in one training
run. Rather training training many models on neighboring datasets that differ on single examples,
their auditing scheme requires training only a single model on a dataset with many “canary”
examples. Specifically, these canaries are randomly sampled from a larger set of canaries. The
auditor then attempts to predict which canaries were in and not in the training set (abstentions
are allowed). The final empirical lower bound is determined by how many guesses were made
and how many were correct. We present their procedure in Algorithm 1.

2. Mahloujifar et al. [2024]. More recently, Mahloujifar et al. [2024] present an alternative
approach, which they show provides better privacy estimates in the one-run setting. Rather than
having a single set of canaries, Mahloujifar et al. [2024]’s method first constructs a set of canary
sets of size K, where a random example in each canary set is using in training. Here, the goal is
to guess which of the K canaries in each set was used in training. As in Steinke et al. [2023],
abstentions are also allowed, and again, the empirical lower bound is determined by the number
of guesses and how many were correct. We present their procedure in Algorithm 2.

Black-box auditing. Nasr et al. [2023] presents two main threat models:

• White-box access: the auditor has full access throughout the training process to both model’s
weights and gradients, being able to inject arbitrarily-designed gradients at each update step

• Black-box access (with input space canaries): this approach is more restrictive, the auditor is
only able to insert training samples in the dataset and observe the model at the end of the process.

In our work, we study the black-box setting that does not allow modifications to the training procedure
(i.e., modifying gradients like in white-box setting with Dirac gradients [Nasr et al., 2023, Steinke
et al., 2023, Mahloujifar et al., 2024] or in an alternative black-box setting studied in Cebere et al.
[2024] that allows gradient sequences to be inserted.). This threat model is often more practically
relevant and includes settings such as publishing the final weights of an open-sourced model. As
shown in Nasr et al. [2023] and Steinke et al. [2023], the gap between the empirical lower bound and
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theoretical upper bound is generally still large in the black-box setting, suggesting that this area of
research may still be underexplored.2

3 Applying (Efficient) MIA to Privacy Auditing

Membership inference [Carlini et al., 2022] often requires the attacker to train several shadow models
on a random subsets of data. This approach, while effective, requires high computational demands
that do not align with the goals of one-run auditing. In contrast Bertran et al. [2023] introduce a
new class of MIA methods that relies on training a single quantile regressor on holdout data only. In
doing so, they predicting a sample-specific threshold for determining membership that outperforms
marginal thresholds, which are equivalent to the sort and rank (by loss) procedure employed in
Steinke et al. [2023] and Mahloujifar et al. [2024].
Definition 3.1 (Quantile Regressor). Given a target false positive rate α, a quantile regressor is a
model q : X → R trained on an holdout dataset P to predict the (1 − α)-quantile for the score
distribution associated to each given sample:

∀(x, s) ∈ P Pr[y ≤ q(x)] = 1− α

Given the relatively small sample size in image datasets like CIFAR-10, Bertran et al. [2023] propose
an alternative method for outputting quantile thresholds in which they train a model that instead
predicts mean µ(x) and the standard deviation σ(x) of the score s(x) (e.g., loss of the model to be
attacked) associated with each example x. The per-example threshold is then calculated based on this
normal distribution (i.e., P (X > s|µ, σ)). The loss can be written as
Definition 3.2 (Negative Log-Likelihood for Gaussian Distributions). The negative log-likelihood
loss for a Gaussian distribution with mean µ and standard deviation σ is given by:

LNLL = Ex∼p(x)

[
(x− µ)2

2σ2
+ log σ

]
where x ∼ p(x) represents samples from some underlying data distribution (e.g., losses from an
image classification model).

In our proposed method, we also adapt this approach and train a neural network to output a Gaussian
distribution for each canary image. However, rather than using as a threshold the q-quantile for some
predetermined value of q [Bertran et al., 2023, Tang et al., 2024], we calculate q directly (i.e., the
CDF P (X > s|µ, σ)). We then use q as the input SCORE function for Algorithms 1 and 2.

4 Experiments

Setup For our empirical evaluation, we follow the experimental set up in prior work [Nasr et al.,
2023, Steinke et al., 2023, Mahloujifar et al., 2024] and train Wide ResNet [Zagoruyko and Ko-
modakis, 2016] models using DP-SGD on the CIFAR-10 dataset [Krizhevsky et al., 2009]. All models
are trained using code provided by Balle et al. [2022], which implements training of state-of-the-art
DP CIFAR-10 models presented in De et al. [2022]. While Steinke et al. [2023] experimented with
black-box canaries with both flipped and unperturbed class labels, we found early on that flipping
labels did not improve the lower bound. Thus, given that perturbing the labels can only hurt the final
DP model’s accuracy, we do not flip the canary labels in our experiments.

All results reported in Tables 1 and 2 are averages over the maximum lower bound (with 95%
confidence) over 5 different runs, each of which is conducted on a different random sample of the
dataset. In these tables, εor corresponds to Steinke et al. [2023] and εor-fdp corresponds to Mahloujifar
et al. [2024]. In addition, we consider the setting in which one considers the choice of auditing
procedure (i.e., Steinke et al. [2023] vs Mahloujifar et al. [2024]) as additional parameter that can be
chosen by the auditor.3In this case, we take the max of εor and εor-fdp for each run, which we denote
as εmax, and again report the average over 5 runs in Tables 1 and 2.

2Mahloujifar et al. [2024], for example, do not evaluate their proposed method in the black-box setting.
3Similarly to how Steinke et al. [2023] report the maximum over lower bounds produced by flipping and not

flipping labels.
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Table 1: We present the empirical lower bounds estimated using baseline method and quantile
regression (ours). εor corresponds to Steinke et al. [2023], εor-fdp corresponds to Mahloujifar et al.
[2024], and εor-max corresponds to max of the two. We calculate ε for 5 different runs and report the
average.

n method r = 45000, m = 5000
εor εor-fdp εmax

47500 baseline 0.159 0.147 0.208
ours 0.210 0.134 0.253

Table 2: We present the empirical lower bounds estimated using baseline method and quantile
regression (ours) for various data settings, including when the canaries make up all (r = 0) and
half (r = n

2 of the training examples. εor corresponds to Steinke et al. [2023], εor-fdp corresponds to
Mahloujifar et al. [2024], and εor-max corresponds to max of the two. We calculate ε for 5 different
runs and report the average.

n method r = 0, m = 2n r = n
2 , m = n

εor εor-fdp εmax εor εor-fdp εmax

5000 baseline 0.181 0.175 0.237 0.299 0.234 0.393
ours 0.280 0.240 0.364 0.279 0.486 0.503

10000 baseline 0.202 0.172 0.216 0.227 0.115 0.241
ours 0.201 0.339 0.364 0.341 0.217 0.356

20000 baseline 0.055 0.086 0.098 0.128 0.191 0.204
ours 0.146 0.246 0.268 0.165 0.313 0.324

Results. In Table 1, we present our results when auditing a model trained with n = 47500 examples
where m = 5000 and r = 450004. For our method, we use the remaining 10000 holdout set examples
to train the quantile regression model. In Table 2, we run experiments similar to those found in
Steinke et al. [2023] for the black-box setting, where the number of training examples n is smaller.
For each choice of n, we run experiments for both when r = 0 (all training examples are canaries)
and r = n

2 (half of the training examples are canaries). In these experiments, we randomly sample
20000 examples out of the remaining holdout set examples to train our quantile regression model.

In most cases, we find that our method achieves higher auditing results, regardless of data setting
(i.e., choices of n, m, and r) and all auditing procedures (εor, εor-fdp, and εmax) In cases where the
baseline performs better, the difference between it and our method is small (e.g., difference of 0.20
for n = 5000, r = n

2 ). Our results strongly indicate that better member inference attacks can improve
DP-SGD auditing and suggest that in general, MIA methods should be incorporated into auditing
experiments when applicable.

Lastly, we present additional observations we made that offer new insights about how one-run auditing
procedures operate in the black-box setting. First, we note that generally speaking, we observe no
clear winner between Steinke et al. [2023] and Mahloujifar et al. [2024] in the black-box setting, in
contrast to the white-box setting in which Mahloujifar et al. [2024] achieves much tighter auditing
results compared to Steinke et al. [2023]. In all cases, the average εmax strictly dominates both εor
and εor-fdp, further suggesting that one auditing procedure does not consistently outperform the other.
In addition, while Steinke et al. [2023] posit that when all training examples are canaries (r = 0),
one can achieve higher auditing results, Table 2 does not clearly corroborate this hypothesis (if
anything, the auditing procedures estimate slightly higher lower bounds when r = n

2 ). We hope that
as research in black-box auditing continues to evolve, further investigation of such observations can
be conducted.

4We note that this data setup corresponds to the experiments described in Steinke et al. [2023] under their
notation of n = 50000 and m = 5000. While both Steinke et al. [2023] and Mahloujifar et al. [2024] audit this
model in the white-box setting, neither report results for it in the black-box setting.
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A Supplementary Details

A.1 One-run auditing

We present in Algorithms 1 and 2 the auditing procedures for Steinke et al. [2023] and Mahloujifar
et al. [2024], respectively.

Note that in 1 and 2, we make minor changes to the notation compared to how they were original
introduced in their respective works [Steinke et al., 2023, Mahloujifar et al., 2024] to make the
settings consistent with eachother. For example, we now let n denote the total number of examples
used in training (rather than the total number of auditing and non-auditing examples in Steinke et al.
[2023]) and m be the total number of canaries (rather than canary sets in Mahloujifar et al. [2024]).
In 1, exactly half of the canaries are randomly sampled such that the data partitioning is exactly
equivalent to Mahloujifar et al. [2024] when the canary set size is K = 2.

Algorithm 1 Auditor with One Training Run
Require: Algorithm to audit A, target number of examples to train on n, scoring function SCORE
Require: Number of positive and negative guesses k+ and k− respectively,
Require: x ∈ Xm+r consisting of m auditing examples (a.k.a. canaries) and r non-auditing

examples, where n = r + m
2

1: Randomly assign Si = +1 to half of the m canaries and Si = −1 to the other half. Set Si = 1
for all remaining examples i ∈ [m+ r] \ [m].

2: Partition x into xIN ∈ XnIN and xOUT ∈ XnOUT according to S, where nIN + nOUT = n. Namely,
if Si = 1, then xi is in xIN; and, if Si = −1, then xi is in xOUT.

3: Run A on input xIN with appropriate parameters, outputting w.
4: Compute the vector of scores Y = (SCORE(xi, w) : i ∈ [m]) ∈ Rm

5: (i.e., T ∈ {−1, 0,+1}m maximizes
∑

i Ti · Yi subject to
∑

i |Ti| = k+ + k− and
∑

i Ti =
k+ − k−).

6: return The vector S ∈ {−1,+1}m indicating the true selection and the guesses T ∈
{−1, 0,+1}m.

Algorithm 2 Reconstruction in one run game
Require: Algorithm to audit A, target number of examples to train on n, scoring function SCORE
Require: Number of guesses k respectively
Require: M = m

K sets (of size K) of canary examples and r non-auditing examples, where
n = r + m

K (assume that m is a multiple of K).
1: Let C = {xi

j}i∈[M ],j∈[K] be the matrix of canaries
2: Let u = (u1, . . . , uM ) be a vector uniformly sampled from [K]M .
3: Let S = {xi

ui
: i ∈ [M ]}.

4: Run mechanism A on S ∪ T to get output w.
5: Compute the matrix of scores Y = (SCORE(xi

j , w) : i ∈ [M ], j ∈ [K]) ∈ RM×K

6: Use scores Y to run a reconstruction attack on w to obtain a vector v = (v1, . . . , vM ) ∈
([K] ∪ {⊥})M in which the number of guesses is k (i.e., k =

∑M
i 1{vi ̸= ⊥})

7: (i.e., v is a vector guessing the index of the canary in each set that was used in training. ⊥
indicates an abstention.)

8: return The vector v

A.2 Additional Experimental Details

Training the quantile regressor. Following Bertran et al. [2023], we use ConvNeXt [Liu et al.,
2022] as our model architecture for the quantile regressor. Similarly, we use as our score function the
difference in logits of the true class label and the class with the next highest logit. As shown in Carlini
et al. [2022], this score function—in contrast to cross-entropy loss—follows a normal distribution,
making it a natural choice for our approach.

Choice of number of guesses k. In general, empirical lower bounds on ε can be quite sensitive to
the number guesses Mahloujifar et al. [2024] made. However, it is unclear from both Steinke et al.
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[2023] and Mahloujifar et al. [2024] how the number of guesses was chosen to produce their main
results. For example, Steinke et al. [2023] state that for they ”evaluate different values of k+ and k−
and only report the highest auditing results,” but do not specify what exact values were tested. We
reached out to the authors, who told us that some values between 10 and 1000 were chosen (but not
exactly how many values of k were tested). Consequently, we evaluate all methods in our experiments
from 10 to the maximum number of guesses possible in multiples of 10, and like prior work [Nasr
et al., 2023, Steinke et al., 2023, Mahloujifar et al., 2024], report the highest auditing results for each
run.
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