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Abstract

Label Differential Privacy (Label DP) aims to
improve utility by adding noise only to labels
but becomes vulnerable to label leakage when
features strongly correlate with labels. We de-
fine Unexpected Leakage to quantify the label
leakage from features and show that Label DP
fails to control it. We revisit Label DP with con-
ditional features, as introduced by prior work,
using this metric and show that it is well-suited
to prevent Unexpected Leakage. Experiments
reveal that Label DP generally achieves higher
utility than a mechanism that prevents Unex-
pected Leakage, but in cases of strong feature-
label correlations, the mechanism can outper-
form Label DP in terms of the utility-privacy
trade-off. Our findings emphasize the impor-
tance of privacy standards that consider feature-
label correlations and provide insights into bal-
ancing privacy and utility in differential privacy
mechanisms.

1 Introduction

Differential Privacy (DP) has been widely adopted
in numerous applications to mitigate privacy
risks. (5; 12; 3; 7) However, conventional DP mech-
anisms apply noise to all user-related information,
often leading to excessive noise that degrades the
utility of the output. To solve this problem in sce-
narios where only labels contain sensitive informa-
tion and features do not, Label Differential Privacy
(Label DP) (6) has been introduced as a relaxed
variant of DP. Label DP requires noise to be added
solely to the output labels, allowing output features
to remain unchanged, thereby enabling a substan-
tial reduction in noise.

While Label DP has the advantage of utility, re-
cent studies have pointed out that Label DP only
prevents information leakage directly from noisy
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labels and neglects potential privacy risks arising
from the correlation between labels and feature
data (2). From the output raw feature, there exists a
possibility that the sensitive label could be inferred
from them, raising new privacy concerns.

This paper focuses on the fact that although such
risks have been identified (2), the extent of label
information leakage from features has not been
rigorously quantified in prior research.

Our Contributions. In this work, we analyze the
binary label information leakage from output fea-
tures in the local setting (9) and make the following
contributions:

• We define a novel metric, Unexpected Leak-
age, to quantify the extent of label information
leakage due to output features.

• We show that the recently proposed privacy
definition, Label Differential Privacy with con-
ditional features (Label DP-CF) (1), prevents
Unexpected Leakage, ensuring that label in-
formation cannot be inferred from output fea-
tures

• We show that Label DP-CF is well-suited for
protecting Unexpected Leakage by analyzing
the relationship of Label DP-CF to Label DP
and DP using Unexpected Leakage. Specifi-
cally, we theoretically prove that Label DP-CF
imposes a stricter privacy guarantee compared
to Label DP to prevent Unexpected Leakage
while serving as a relaxed version of DP to
utilize the non-sensitive features.

• Our experiments demonstrate that stronger
feature-label correlations lead to greater un-
expected leakage. While Label DP generally
provides better utility than Local DP at the
same leakage level, Local DP can outperform
it when the feature-label correlation is partic-
ularly strong.
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2 Related Work

Existing work analyzed Label DP from the perspec-
tive of label inference attacks using the concept of
Expected Attack Utility (EAU) (14; 2; 11). Busa-
Fekete et al. (2) and Wu et al. (14) identified that La-
bel DP mechanisms fail to fully protect label infor-
mation due to inference attacks leveraging output
features. Specifically, they demonstrated that Label
DP cannot establish an upper bound on EAU. More-
over, Wu et al. (14) proposed the concept of advan-
tage with the combination of EAUs, which repre-
sents information gain in a specific setting, and
showed that Label DP appropriately bounds this
gain. Busa-Fekete et al. (11) showed that Label DP
controls the advantage better than learning-from-
aggregate-labels techniques (15) with respect to the
utility-privacy trade-off. However, these works do
not explore another information gain that Label DP
does not protect, which causes unbounded EAU.

In contrast, Busa-Fekete et al. (1) proposed La-
bel Differential Privacy with conditional features
(Label DP-CF). They showed that Label DP-CF
prevents any label inference attack. However, it
lacks an intuitive and interpretable assessment of
Label DP-CF.

To address these limitations, we define a novel met-
ric called Unexpected Leakage with new combina-
tion of EAUs, which measures the label informa-
tion gain that Label DP does not protect. Specifi-
cally, we define the expected degree of label leak-
age as the EAU under randomized response (RR),
which serves as a baseline privacy mechanism. The
actual degree of label leakage is quantified by the
EAU of an arbitrary mechanism M. The difference
between these two values defines what we refer to
as Unexpected Leakage. By combining theoretical
analysis and empirical validation, our study offers a
novel approach to evaluating Label DP-CF and pro-
vides deeper insights into the practical feasibility
of label privacy guarantees.

3 Preliminaries

Here, we introduce the privacy definitions that are
related to our work.

Definition 3.1 (ε-Local Differential Privacy (4)).
Given ε ∈ R+, M satisfies ε-DP if, for any two
features ∀x, x′ ∈ X and labels ∀y, y′ ∈ Y , and
for any subset of outputs Z ⊆ Z , the following

inequality holds:

Pr[M(x, y) ∈ Z]

Pr[M(x′, y′) ∈ Z]
≤ eε.

Definition 3.2 (ε-Label Differential Privacy (6)).
M satisfies ε-Label DP if, for any feature x ∈ X ,
any two labels y, y′ ∈ Y , and any subset of outputs
Z ⊆ Z , it holds that

Pr[M(x, y) ∈ Z]

Pr[M(x, y′) ∈ Z]
≤ eε.

Definition 3.3 ((ε,P)-Label Differential Privacy
with conditional features (Label DP-CF) (1)).
Given ε ∈ R+ and a distribution P over X × Y , a
randomized mechanism M : X ×Y 7→ Z satisfies
(ε,P)-Label DP with conditional features if, for
any two labels ∀y, y′ ∈ Y and for any subset of
outputs Z ⊆ Z , the following inequality holds:

PrX∼P(X|y)[M(X, y) ∈ Z]

PrX′∼P(X|y′)[M(X ′, y′) ∈ Z]
≤ eε.

Label DP-CF is the definition naively derived by
applying the notion of Definition 4.3 from prior
work (1) to pure DP instead of Rényi DP. Label
DP-CF supposes that the features are not assumed
to be sensitive, but also not assumed to be public.

The (Individual) Expected Attack Utility of adver-
sary A : X × Z → Y which is modeled by a
randomized function and mechanism M that per-
turbs an example from a distribution P (P(Y|x)
with a fixed feature x) is defined as:

EAU(A,M,P) = Pr
(X,Y )∼P

[A(X,M(X,Y )) = Y ] .

IEAU(A,M,P, x) = Pr
Y∼P(Y|x)

[A(x,M(x, Y )) = Y ] .

4 Unexpected Leakage

Label DP improves model accuracy by reducing
the noise compared to DP, assuming that features
are not sensitive while labels remain private. This
approach enhances data utility by ensuring label
anonymity while allowing access to raw features.

However, features can still lead to label leakage if
they are highly correlated with labels. For instance,
if a dataset includes blood pressure as a feature
and hypertension status as a label, the label can
be inferred directly from the feature, even when
anonymized. This demonstrates that label leakage

2



occurs beyond the guarantees of ε-Label DP, as
an attacker can exploit feature-label correlations to
infer private information.

Existing Label DP frameworks do not fully address
this issue. To clarify this leakage, we define Un-
expected Leakage as the degree of label leakage
arising from features and formally quantify it in
this study.

Definition 4.1 (Unexpected Leakage). Given a
mechanism M and a distribution P over X ×
Y , Unexpected Leakage (UnExpected attack
Advantage) is defined as:

UEAdv(M,P) =

sup
A

EAU(A,M,P)−sup
A

EAU(A,MWRR,P).

Here, MWRR represents a mechanism that out-
puts only labels applied Warner’s Randomized Re-
sponse (RR) (13).

Similarly, when fixing the data point x, the Individ-
ual Unexpected Leakage (Individual UnExpected
attack Advantage) is defined as:

IUEAdv(M,P, x) =

sup
A

IEAU(A,M,P, x)−

sup
A

IEAU(A,MWRR,P, x).

Since MWRR produces randomized outputs using
only label information, it prevents label leakage
through correlations with features. Additionally,
for binary labels, MWRR has been shown to be the
optimal mechanism for label inference in terms of
accuracy (8). Therefore, EAU(A,MWRR,P) can
be considered the expected accuracy of the worst-
case attacker under ε-Label DP. In contrast, when
ε-Label DP allows highly correlated features to
be released, the worst-case attacker’s accuracy is
represented by IEAU(A,M,P, x).

From Definition 4.1, unexpected leakage is defined
as the difference between these two values, and if
it is greater than zero, unexpected leakage occurs.

Proposition 4.1. For the RR mechanism MRR,
which release the original features and randomized
labels, the maximum unexpected leakage IUEAdv
depends on ε, the prior probability P(Y = y), and
the posterior probability P(Y = y | x):

IUEAdv(MRR,P, x)

≤ eε · {P(Y = y | x)− P(Y = y)}.

This leads to the following corollary:

Corollary 4.2. If r(x, y) =
P(y|x)
P(y)

P(1−y|x)
P(1−y)

> 1, then

MRR exhibits unexpected leakage. Moreover, un-
expected leakage can increase monotonically with
r(x, y).

Thus, even if a mechanism satisfies ε-Label DP,
strong feature-label correlations can result in in-
sufficient label protection. Since r(x, y) and ε are
independent, ε in Label DP fails to reliably control
label privacy.

5 Analysis of Label DP-CF

In this section, we revisit Label DP-CF (1) from
the perspective of Unexpected Leakage. First,
we demonstrate that Label DP-CF prevents Unex-
pected Leakage. Then, we compare Label DP-CF
with DP and Label DP within the framework of
Unexpected Leakage, offering a clearer interpre-
tation of Label DP-CF. These results collectively
establish that Label DP-CF is a well-suited privacy
definition to prevent Unexpected Leakage.

Unexpected Leakage in (ε,P)-Label DP-CF:
We now establish the following theorem regard-
ing unexpected leakage under (ε,P)-Label DP-CF.

Theorem 5.1. Any mechanism satisfying (ε,P)-
Label DP-CF does not exhibit unexpected leakage.

This result confirms that even in cases of strong
feature-label correlations, label information re-
mains protected under ε to the expected extent,
equivalent to the protection provided by Warner’s
RR under ε.

Comparison of Label DP-CF with DP and Label
DP: We compare (ε,P)-Label DP-CF against
Label DP and DP, demonstrating that it provides
stronger protection than Label DP while being less
restrictive than DP with respect to Unexpected
Leakage. This implies that it has more expressive
power than ε-DP while still ensuring strict label
protection under ε-Label DP.

Relation to ε-Label DP: The following theorem
shows that, for datasets that do not exhibit unex-
pected leakage, (ε,P)-Label DP-CF is equivalent
to Label DP.

Theorem 5.2. Any mechanism satisfying ε-Label
DP-CF also satisfies ε-Label DP. The converse
holds only if r(x, y) = 1.
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(a) Breast cancer (b) Simulation dataset

Figure 1: Results on Unexpected Leakage.

This result establishes that (ε,P)-Label DP-CF
serves as an improved version of ε-Label DP that
accounts for unexpected leakage.

Additionally, the following corollary demonstrates
that this concept relaxes the ε-DP definition.

Corollary 5.3. Any mechanism satisfying ε-DP
also satisfies (ε,P)-Label DP-CF. The converse
holds only if r(x, y) = ∞.

This suggests that mechanisms satisfying (ε,P)-
Label DP-CF but not ε-DP can potentially achieve
higher utility. Furthermore, this result indicates that
ε-DP ensures label anonymity without unexpected
leakage.

6 Experiment

Setting: Experiments on the simulated dataset fol-
lowed the methodology of Wu et al. (14), while
experiments on real-world data were conducted us-
ing the Breast Cancer Wisconsin (Diagnostic) Data
Set (10).

6.1 Results on Unexpected Leakage

Figure 1 shows Unexpected Leakage on two
datasets. The value next to each point denotes
ϵ. The red line represents the results for the high
dataset, where the relationship between labels and
features is strong, while the blue line corresponds
to the low dataset, where this relationship is rela-
tively weaker. The dashed line indicates the leak-
age of a certain mechanism (EAU), the solid line
represents the leakage level of Warner’s RR, and
the thin line shows the expected value of the condi-
tional feature distribution E[y | x] for each dataset.

Figure 1b illustrates the results for the simulation
dataset. The gap between the solid and dashed lines
is larger for the red line, indicating that as the re-
lationship between features and labels strengthens,
the extent of unintended leakage increases.

Figure 2: Label DP vs. Local DP. The values of ε for
Label DP and DP are {8, 4, 2, 1, 0.1} and {8, 4, 2, 1.4,
1}, respectively, from left to right.

Figure 1a presents the results for the real-world
dataset. Since the exact probability P(Y = y | x)
is unknown, we estimated it using an LLM(GPT-
4o), and the corresponding results are shown by
the dashed and thin lines. Similar to the simulation
results, stronger feature-label relationships lead to
greater unintended leakage.

6.2 Comparison of Label DP and Local DP

Figure 2 illustrates the overall leakage on the x-axis,
which is the sum of unexpected and expected leak-
age, while the y-axis represents the test AUC, indi-
cating utility. Overall, for the same level of leakage,
Label DP achieves a higher test AUC, demonstrat-
ing its superiority as a method. However, in the
lower right section of the red line, specifically when
εLabel DP = 0.1, Local DP achieves a higher test
AUC at a comparable leakage level. This suggests
that in datasets where the relationship between fea-
tures and labels is strong, Local DP may sometimes
outperform Label DP.

7 Conclusion

This study identified a fundamental limitation of
conventional ε-Label Differential Privacy, demon-
strating that it fails to fully prevent label leakage
when labels are strongly correlated with publicly
available features. To address this issue, we de-
fined Unexpected Leakage to quantify the label
leakage from features. Furthermore, we showed
that the recently proposed privacy definition, La-
bel DP-CF prevents Unexpected Leakage, ensuring
that label information cannot be inferred from out-
put features. Our experiments demonstrated that
stronger feature-label correlations lead to greater
unexpected leakage. While Label DP generally
provided better utility than Local DP at the same
leakage level, Local DP outperformed it when the
feature-label correlation was particularly strong.
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A Appendix

A.1 Proof of Proposition 4.1

Proposition (4.1). The maximum value of
IUEAdv depends on ε, P(y), and P(y | x).

Proof. IUEAdv is expressed as P(y = y |
X, ỹ) − P(y = y | ỹ). First, from Bayes’ the-
orem, P(y = y | X = x, ỹ = ỹ) is given by

P(ỹ = ỹ | y = y, x)P(y = y | x)∑
y′∈{0,1} P(ỹ = ỹ | y = y′, x)P(y = y′ | x)

Since the output of MRR does not depend on x,

P(y = y | X = x, ỹ = ỹ)

=
P(ỹ = ỹ | y = y)P(y = y | x)∑

y′∈{0,1} P(ỹ = ỹ | y = y = y′)P(y = y′ | x)

Furthermore, for simplicity, let A := P(ỹ = ỹ |
y = y), B := P(ỹ = ỹ | y = 1 − y), and p :=
P(y = y | x), then

P(y = y | X = x, ỹ = ỹ)

=
Ap

Ap+B(1− p)

Similarly, P(y = y | ỹ = ỹ) is given by

P(ỹ = ỹ | y = y)P(y = y)∑
y′∈{0,1} P(ỹ = ỹ | y = y′)P(y = y′)

=
AP(y = y)

AP(y = y) +B P(y = 1− y)

Letting q = P(y = y),

Aq

Aq +B(1− q)
.

Thus, IUEAdv is expressed as

IUEAdv =
Ap

Ap+B(1− p)
− Aq

Aq +B(1− q)
.
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Considering f(t) := At
At+B(1−t) ,

IUEAdv = f(p)− f(q)

By the mean value theorem,

f(p)− f(q) =

∫ p

q
f ′(t)dt ≤ max

t∈[0,1]
f ′(t) · (p− q)

Thus, we consider maxt∈[0,1] f
′(t).

f ′(t) =
A{B + t(A−B)} −At(A−B)

{B + (A−B)t}2

=
AB

{B + (A−B)t}2
.

Here, f ′(t) attains its minimum value B at t = 0
when A > B and attains its minimum value A at
t = 1 when B > A. Thus,

max
t∈[0,1]

f ′(t) =
AB

min(A,B)2
= max

{
A

B
,
B

A

}
From the reversal probability of the randomized
response mechanism, max

{
A
B , BA

}
= eε, so

f(p)− f(q) ≤ eε(p− q)

which implies

IUEAdv = P(y = y | X, ỹ)− P(y = y | ỹ)
≤ eε · {P(y = y | x)− P(y = y)}

A.2 Proof of Corollary 4.2

Corollary (4.2). When r(x, y) =
P(y|x)
P(y)

P(1−y|x)
P(1−y)

> 1,

MRR exhibits unexpected leakage. Furthermore,
unexpected leakage increases monotonically with
respect to r(x, y) > 1.

Proof.
P(y|x)
P(y)

P(1−y|x)
P(1−y)

> 1

Here, letting p := P(y | x), q := P(y),
p
q

1−p
1−q

> 1

p

q
>

1− p

1− q

p− pq > q − pq

p > q

∴ eε · (p− q) > 0

A.3 Proof of Theorem 5.2

Corollary (5.2). A mechanism satisfying ε-Label
DP-CF also satisfies ε-Label DP. The converse

holds only if r(x, y) =
P(y|x)
P(y)

P(y′|x)
P(y′)

= 1.

Proof. First, we prove that a mechanism M satis-
fying ε-Label DP-CF also satisfies ε-Label DP. For
some mechanism M′ satisfying ε-Label DP, there
exists a (randomized) post-processing function f
such that f(M′(X, y)) is equivalent to M. Thus,
by the post-processing theorem of Label DP, M
provides the same privacy guarantees as M′. This
implies that M satisfies ε-Label DP.

Next, we prove the converse.

Pr[MRR(X,y) = z | y = y]

Pr[MRR(X,y) = z | y = y′]
=∫

x∼P(X|y) Pr[MRR(X,y) = z | (X,y) = (x, y)]P(x | y)dx∫
x′∼P(X|y′) Pr[MRR(X,y) = z | (X,y) = (x′, y′)]P(x′ | y′)dx′

Since MRR does not modify features, we have
x = x′ = x̃, leading to

Pr[MRR(X,y) = z | y = y]

Pr[MRR(X,y) = z | y = y′]

=
Pr[MRR(X,y) = (x̃, ỹ) | (X,y) = (x̃, y)]

Pr[MRR(X,y) = (x̃, ỹ) | (X,y) = (x̃, y′)]

∗ P(x̃ | y)
P(x̃ | y′)

=
P(ỹ | y)P(x̃ | y)
P(ỹ | y′)P(x̃ | y′)

=
P(ỹ | y)P(y|x̃)P(y)

P(ỹ | y′)P(y
′|x̃)

P(y′)

Thus,

P(y|x̃)
P(y)

P(y′|x̃)
P(y′)

e−ε ≤ Pr[MRR(X,y) = z | y = y]

Pr[MRR(X,y) = z | y = y′]

≤
P(y|x̃)
P(y)

P(y′|x̃)
P(y′)

eε

Therefore, when r(x, y) =
P(y|x̃)
P(y)

P(y′|x̃)
P(y′)

̸= 1, the mech-

anism does not satisfy ε-Label DP-CF, and as
r(x, y) > 1 increases, the upper bound also in-
creases.
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A.4 Proof of Theorem 5.3

Corollary (5.3). A mechanism M satisfying ε-DP
also satisfies ε-Label DP-CF. The converse holds
only if r(x, y) = ∞.

Proof. For any output subset Z ∈ Z , we need
to prove that if a mechanism M satisfies ε-
Differential Privacy, then M also satisfies:

Pr
X∼P(X|y)

[M(X, y) ∈ Z] ≤

eε Pr
X′∼P(X|y′)

[M(X ′, y′) ∈ Z]

⇔
∫
x
P(X = x | y) Pr[M(x, y) ∈ Z]dx

≤ eε
∫
x′
P(X = x′ | y′) Pr[M(x′, y′) ∈ Z]dx′

If a mechanism M satisfies ε-Differential Privacy,
then for all x, x′ ∈ X and y, y′ ∈ Y , we have:

Pr[M(x, y) ∈ Z] ≤ eε Pr[M(x′, y′) ∈ Z]

Thus, we obtain:

Pr[M(x, y) ∈ Z]

=

∫
x′
P(X = x′ | y′) Pr[M(x, y) ∈ Z]dx′

≤ eε
∫
x′
P(X = x′ | y′) Pr[M(x′, y′) ∈ Z]dx′ ,

Therefore, for each x,

P(X = x | y) Pr[M(x, y) ∈ Z] ≤ P(X = x | y)·(
eε
∫
x′
P(X = x′ | y′) · Pr[M(x′, y′) ∈ Z] dx′

)
,

Integrating over x,∫
x

P(X = x | y) Pr[M(x, y) ∈ Z]dx

≤ eε
(∫

x

P(X = x | y)dx

)(∫
x′
P(X = x′ | y′)·

Pr[M(x′, y′) ∈ Z] dx′

)
,

Since
∫
x P(X = x | y)dx = 1, we obtain:∫

x
P(X = x | y) Pr[M(x, y) ∈ Z]dx

≤ eε
∫
x′
P(X = x′ | y′) · Pr[M(x′, y′) ∈ Z] dx′.

Therefore, if a mechanism M satisfies ε-DP, then
it also satisfies ε-Label DP-CF.

Next, we prove the converse. Consider the follow-
ing expression for mechanism M:∫

x P(X = x | y) Pr[M(x, y) ∈ Z]dx∫
x P(X = x | y′) Pr[M(x, y′) ∈ Z]dx

If r(x, y) = ∞ and M does not satisfy ε-DP, this
value becomes ∞. Thus, M must satisfy ε-DP.
Conversely, if r(x, y) < ∞, then a mechanism
M that does not satisfy ε-DP may still satisfy ε-
Label DP-CF. Therefore, only when r(x, y) = ∞,
a mechanism M satisfying ε-Label DP-CF also
satisfies ε-DP.

A.5 Proof of Theorem 5.1

Theorem (5.1). A mechanism satisfying ε-Label
DP-CF does not exhibit unexpected leakage.

Proof. Let M be a mechanism that satisfies ε-
Label DP-CF. Suppose that X and X ′ are random
variables following the distributions P(X | y) and
P(X | 1− y), respectively. Then, the probability
distributions M(X, y) and M(X ′, 1 − y) satisfy
ε-indistinguishability. From this property, there
exist probability distributions Q(y) and Q(1− y)
such that:

M(X, y) = Q(y)
eε

1 + eε
−Q(1− y)

1

1 + eε

M(X ′, 1− y) = Q(1− y)
eε

1 + eε
−Q(y)

1

1 + eε

as shown in (8).

Thus, M can be interpreted as applying post-
processing to the output ỹ of MRR without observ-
ing x or y. This implies that the attacks feasible for
Ainformed are a subset of those feasible for Anaive.
Consequently, both IUEAdv and IUEAdv are at
most 0, proving that unexpected leakage does not
occur.
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