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1 INTRODUCTION
Due to the risk of privacy violations, data curators cannot
freely share the data they collect from individuals. As a result,
they often remove useful information for anonymization or
aggregate data into statistical summaries before providing it
to data analysts. However, ideally, data analysts should be
able to perform flexible data processing directly on raw data
by writing familiar Python scripts.

To address this situation, we propose PrivJail, a Python li-
brary that enforces differential privacy (DP) for data analysts.
PrivJail provides a strong privacy guarantee by prohibit-
ing any outputs of non-differentially private values, even
to data analysts. At the same time, PrivJail allows data an-
alysts to write Python scripts using Pandas-like dataframe
operations [19] to process raw data flexibly.

Figure 1 provides an overview of PrivJail’s architecture. In
PrivJail, non-differential private values are referred to as pris-
oners, which are derived from input private data. Analysts
can spend 𝜖 to release prisoners by applying DP mechanisms.
They may continue releasing prisoners until the predeter-
mined privacy budget limit is reached.

PrivJail enforces DP through a two-stagemechanism. These
two stages ensure that:
(1) As long as only explicitly provided library calls are used,

the output is always guaranteed to satisfy DP.
(2) There is no direct access to prisoners through any means

other than the explicitly provided library calls.
In stage (1), each library call ensures that prisoner values

are never directly output. Instead, it guarantees that only
noisy results that satisfy 𝜖-DP are released. To calibrate noise
that satisfy 𝜖-DP, the library needs to determine the sensi-
tivity for each operation. In Python-style data processing,
noise is often added after applying multiple data transfor-
mations to the input data. In such cases, the library must
automatically derive the overall sensitivity of the combined
operations based on the sensitivities of individual operations.
This process is referred to as sensitivity tracking. PrivJail
dynamically tracks sensitivity, as proposed in previous re-
search [2, 3, 10, 17].

What is novel about PrivJail is its support for dynamic sen-
sitivity tracking for major Pandas [19] dataframe operations.
A dataframe is a tabular, two-dimensional data structure
consisting of rows and columns. Unlike relational databases,
both rows and columns are ordered in a dataframe. Existing
sensitivity tracking methods do not account for the order of
records, making them incompatible with many dataframe op-
erations. We discuss sensitivity tracking rules for dataframe
operations in section 5.
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Figure 1: Concept of PrivJail.

In stage (2), only the operations on prisoners assumed
in stage (2) are permitted, while any unauthorized access
paths to prisoners are strictly prohibited. For example, in
Python, it is difficult to restrict access to private class mem-
bers, making it easy to extract and output prisoner values.
One approach to blocking such loopholes is to use Python
sandboxes [15], but as discussed in section 2, it is a less secure
approach as it depends on Python’s language specifications
and implementation details.
In this paper, we propose a system design that isolates

prisoner values at the process level, separating them from
user-provided script execution. Only permitted function calls
are accepted via remote procedure calls (RPCs) between pro-
cesses (section 6). This design ensures that operations on
prisoners are allowed only through language-independent
RPCs, enabling strong privacy protection.
We demonstrate that PrivJail is expressive enough to im-

plement a DP decision tree algorithm [8] in section 7.

2 RELATEDWORK
Static type systems, such as Fuzz [11, 21], DFuzz [9], Duet [18],
Solo [1], and Spar [14], enforce DP by automatically deriving
sensitivity from low-level programming primitives. In con-
trast, dynamic sensitivity tracking is used by Python libraries
such as DDUO [2], OpenDP [10], and Tumult Analytics [3].
PrivJail follows this dynamic approach for sensitivity track-
ing. We move a step further by introducing computation
rules to support major Pandas-like dataframe operations, as
discussed in section 5. This is not straightforward because
dataframes offer row ordering unlike relational databases,
and operations between dataframes are prevalent.

There exists a spectrum of trust levels granted to data an-
alysts. First, when query inputs are restricted to SQL ([4, 12,
13, 22]) or domain-specific languages (such as Fuzz [11, 21]),
it is easier to design a system that does not trust data ana-
lysts. On the other hand, libraries built on general-purpose
languages [1, 2, 14, 17] often assume a certain level of trust in
data analysts, aiming to prevent unintended mistakes in DP



implementations, following the honest-but-fallible model [1,
2]. In such systems, loopholes for direct access to sensitive
values are not necessarily eliminated.

Antigranular [15] is a Python library designed to block
the aforementioned loopholes. To prevent unintended oper-
ations, Antigranular executes user-provided scripts within a
Python sandbox. However, this approach heavily relies on
the correctness of the sandbox implementation, making it
less secure. In fact, several vulnerabilities have already been
reported in RestrictedPython library [7]. Since sandboxes
rely heavily on language specifications and runtime imple-
mentations, they have a large attack surface and struggle to
keep up with evolving language features. As discussed in
section 6, PrivJail’s approach to protecting sensitive data is
language-independent and therefore considered more secure.

3 PRELIMINARIES
The mechanism𝑀 satisfies 𝜖-differential privacy (𝜖-DP) [5]
if, for any neighboring databases 𝐷 ∼ 𝐷 ′ and any output set
𝑆 , the following condition holds:

𝑃 [𝑀 (𝐷) ∈ 𝑆] ≤ exp(𝜖) · 𝑃 [𝑀 (𝐷 ′) ∈ 𝑆]
Neighboring databases differ by exactly one row.
For simplicity, we focus on a function 𝑓 : D → R that

takes a database as input and outputs a real number. The
global sensitivity of such functions is defined as follows:

Δ𝑓 = max
𝐷∼𝐷 ′

|𝑓 (𝐷) − 𝑓 (𝐷 ′) |

Sensitivity is used to determine the magnitude of noise in
differential privacy. For example, the Laplace mechanism
satisfies 𝜖-DP by adding noise drawn from the Laplace dis-
tribution Lap(Δ𝑓 /𝜖).

4 OVERVIEW AND USAGE OF PRIVJAIL
PrivJail assumes that each row in the input table corresponds
to a single individual, enforcing event-level DP. In other
words, PrivJail does not currently support user-level DP [6].
The current implementation supports only pure DP and does
not yet incorporate advanced composition techniques.

To use PrivJail in Python, users can import PrivJail and its
Pandas interface as follows:
1 import privjail as pj
2 from privjail import pandas as pd

To load a CSV file:
1 >>> df = pd.read_csv("filename.csv")

The returned dataframe is an instance of the PrivDataFrame
class, which prohibits direct output of its content.
1 >>> print(df)
2 Prisoner(<class 'pandas.core.frame.DataFrame'>, distance=1)

In PrivJail, such values are referred to as prisoners, distin-
guishing them fromnormal public values. The PrivDataFrame
class is a subclass of the abstract Prisoner class.

To retrieve the row count from a private dataframe:

1 >>> df.shape[0]
2 Prisoner(<class 'int'>, distance=1)

The df.shape property returns a tuple of the row count and
column count. The row count is a prisoner (SensitiveInt
class), while the column count is a public value. To release a
prisoner, users must apply a DP mechanism.

To observe the row count using the Laplace mechanism:
1 >>> pj.laplace_mechanism(df.shape[0], eps=0.1)
2 32561.65454862431

This output is a normal floating-point number (public value).
To compute the mean of a column:

1 >>> df["age"].mean(eps=0.1)
2 privjail.util.DPError: The domain is unbounded. Use clip().

However, this results in an error because the input domain
is unbounded.

Users can set a bounded domain for a column using clip():
1 >>> df["age"].clip(0, 120).mean(eps=0.1)
2 38.52147065037341

PrivJail’s private dataframes manage domains for each
column, which are accessible via df.domains. Besides clip-
ping, users can specify column domains using a schema file,
which can be loaded alongside the data source. A schema
file (e.g., json) may contain data types, ranges, and potential
categorical values for each column.
Users can check the currently consumed privacy budget

for each data source by:
1 >>> pj.consumed_privacy_budget()
2 {'filename.csv': 0.3}

Data curators can set an upper limit on privacy budget, pre-
venting further analysis once the limit is reached.

5 DYNAMIC SENSITIVITY TRACKING
To count the number of people over 40 years old:
1 >>> pj.laplace_mechanism(df[df["age"] > 40].shape[0], eps=0.1)
2 13445.401235025374

This follows the typical Pandas-style filtering notation, but
automatically determining that the sensitivity of this opera-
tion is 1 is nontrivial. This difficulty arises because the above
filtering operation consists of multiple underlying primitives:
1 s1 = df["age"] # Select a column (series) by column name
2 s2 = s1 > 40 # Element-wise comparison with a scalar value
3 df1 = df[s2] # Filtering df by a series of boolean elements
4 df1.shape[0] # Retrieve a row count of df

A unified rule is necessary to automatically derive the sensi-
tivity of any combination of such primitives.
To address this, we adopt the generalized definition of

function sensitivity introduced by Reed and Pierce [21],
which accommodates functions that take arbitrary input
and output types. According to their definition, a function
𝑓 : 𝜏1 → 𝜏2 is c-sensitive if, for any input 𝑥 and 𝑥 ′, the
following condition holds:

𝑑𝜏2 (𝑓 (𝑥), 𝑓 (𝑥 ′)) ≤ 𝑐 · 𝑑𝜏1 (𝑥, 𝑥 ′)
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where 𝑑𝜏1 (𝑥, 𝑥 ′) and 𝑑𝜏2 (𝑥, 𝑥 ′) are the distance functions in
the domains of types 𝜏1 and 𝜏2. This definition enables defin-
ing sensitivity for primitives including intermediate data
transformations.
The goal of sensitivity tracking is to determine the sen-

sitivity of a composite function 𝐹 : D → R from its con-
stituent primitive functions 𝑓 : 𝜏1 → 𝜏2. This can be achieved
through either static analysis [1, 9, 14, 18, 21] or dynamic
analysis [2, 3, 10, 17]. Similar to DDUO [2], PrivJail adopts a
dynamic approach in Python.
PrivJail dynamically tracks sensitivity by assigning each

prisoner a distance, representing the maximum possible dif-
ference between its values when computed over neighboring
databases. The original prisoner is initialized with a distance
of 1, as neighboring databases differ by a single row. New
prisoners are assigned distances according to prisoner com-
putation rules defined for each function. For any 𝑐-sensitive
function, the rule is expressed as follows:

⟨𝑣1⟩𝑑 : ⟨𝜏1⟩ −→ ⟨𝑣2⟩𝑐 ·𝑑 : ⟨𝜏2⟩
where ⟨𝑣⟩𝑑 : ⟨𝜏⟩ represents a prisoner holding a true value
𝑣 : 𝜏 with distance 𝑑 assigned. This rule states that the
output prisoner’s distance is obtained by multiplying the
input distance by 𝑐 .
The prisoner computation rule can also be defined for

functions with multiple prisoner inputs. For example, the
rule for adding two prisoners holding real numbers can be
expressed as follows:

⟨𝑣⟩𝑑 : ⟨R⟩, ⟨𝑣 ′⟩𝑑 ′ : ⟨R⟩ −→ ⟨𝑣 + 𝑣 ′⟩𝑑+𝑑 ′ : ⟨R⟩
This assumes that the two input prisoners are originated
from the same data source.

If the prisoner computation rules are correctly applied, it
follows that the composite function 𝐹 : D → R producing
a prisoner ⟨𝑣⟩𝑑 : ⟨R⟩ is 𝑑-sensitive. Therefore, the distance
assigned to a prisoner can be treated as a sensitivity parame-
ter when applying noise. For example, the computation rule
for the Laplace mechanism can be written as follows:

⟨𝑣⟩𝑑 : ⟨R⟩, 𝜖 : R>0 { 𝑣 + Lap(Δ/𝜖) : R

where “ { ” represents probabilistic computation.
One of our contributions is the definition of a set of pris-

oner computation rules for major dataframe operations.

5.1 Distance Function of DataFrames
In order to define prisoner computation rules for dataframe
operations, we first need to define a distance function for
private dataframes. In previous work, such as Fuzz [21],
databases are represented as multisets, in which rows are
not ordered. However, dataframes generally offer ordering
on rows [20]. For example, the methods df.head() and
df.tail() rely on row order.

Hence, we use edit distance as the distance between dataframes.
Here, the edit distance replaces character matching with row
matching in a dataframe. Specifically, we use the Longest

Common Subsequence (LCS) distance, where adding or delet-
ing a single row increases the distance by 1. Using the LCS
distance, we define the distance between two dataframes
df 1, df 2 ∈ DF as follows:

𝑑DF (df 1, df 2) = |df 1 | + |df 2 | − 2 · |LCS(df 1, df 2) |

where |df | represents the number of rows in the DataFrame,
and LCS(df 1, df 2) denotes the LCS between df 1 and df 2.
By adopting the above definition, PrivJail can support a

query such as “the average age of the top 100 highest earners”
can be expressed as follows.
1 df.sort_values("income").tail(100)["age"].mean(eps=0.1)

It is easy to see that the sensitivity of stable sort is 1.

5.2 Row-Wise Operations between DataFrames
Pandas supportsmany row-wise operations between dataframes,
such as addition (df1 + df2) and row filtering with a boolean
series (df[df["age"] > 40]). However, the presence or ab-
sence of a single row in one of the dataframes can change
the row correspondence, potentially causing all values in the
resulting dataframe to differ in the worst case. As a result,
the output distance cannot be bounded for arbitrary pairs of
input dataframes.

To address this, we restrict row-wise operations to dataframes
that have the same row correspondence. A dataframe opera-
tion is row-preserving if
• it is a row-wise operation that the computation for
the 𝑖-th row in the input dataframe(s) results in the
𝑖-th row in the output dataframe(s), and
• the computation for the 𝑖-th row does not depend on
values from other rows or row indices (𝑖).

It is guaranteed that dataframes derived from the same source
dataframe only through row-preserving operations have the
same row correspondence.
In the implementation, a private dataframe is assigned a

row tag in addition to a distance. For example, the prisoner
computation rule for row filtering is expressed as follows:

⟨df ⟩𝑝
𝑑
: ⟨DF ⟩, ⟨s⟩𝑝

𝑑
: ⟨S⟩ −→ ⟨df [s]⟩𝑝

fresh

𝑑
: ⟨DF ⟩

where 𝑝 is the row tag of the inputs and 𝑝 fresh is a newly
generated row tag in this operation. This rule indicates that
the input dataframe and series must have the same row tag,
and that this operation is not row-preserving, as a new row
tag is assigned to the output dataframe.

5.3 Exclusive Partitioning of DataFrames
The method df.groupby() partitions the dataframe exclu-
sively based on values of a specified column. A simplified
rule for this operation could be expressed as follows:

⟨df ⟩𝑝
𝑑
: ⟨DF ⟩, 𝑐 : str −→ ⟨[df 𝑖 ]⟩𝑑 : ⟨[DF ]⟩

where the output is a list of partitioned dataframes [df 𝑖 ],
and its distance is defined as the L1 norm. To retrieve the
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𝑘-th dataframe from a list of dataframes:

⟨[df 𝑖 ]⟩𝑑 : ⟨[DF ]⟩, 𝑘 : N0 −→ ⟨df 𝑘⟩
𝑝 fresh

𝑑
: ⟨DF ⟩

However, if we retrieve all dataframes from the list individu-
ally and sum their row counts, the resulting distance becomes
𝑑 ·𝑁 , where 𝑁 is the number of dataframes in the list. Ideally,
the result should be equal to the original dataframe’s row
count with distance 𝑑 .
We address this distance amplification issue by introduc-

ing distance variables and distance constraints, inspired by
their use in Spar [14] for static analysis. In PrivJail, we ex-
press a distance as 𝑑 = (𝜂,𝐶), where 𝜂 is a distance expres-
sion and 𝐶 is a set of distance constraints. A refined rule for
the groupby operation can be expressed as follows:

⟨df ⟩𝑝
𝑑
: ⟨DF ⟩, 𝑐 : str −→ [⟨df 𝑗 ⟩

𝑝
fresh
𝑗

𝑑 𝑗
] : [⟨DF ⟩]

where 𝑑 = (𝜂,𝐶), 𝑑 𝑗 = (𝜂 𝑗 ,𝐶 ∪
{∑

𝑗 𝜂 𝑗 = 𝜂
}
), 𝜂 𝑗 ← fresh var

This outputs a list of prisoners, rather than a prisoner of
a list. Each partitioned dataframe is assigned a new dis-
tance variable 𝜂 𝑗 , under the distance constraint

∑
𝑗 𝜂 𝑗 = 𝜂.

Consequently, summing the row counts of all partitioned
dataframes yields a result distance of

∑
𝑗 𝜂 𝑗 , which is equal

to the original dataframe’s distance 𝜂. When applying noise,
the sensitivity parameter is calculated as the maximum value
of the distance expression 𝜂 under the constraints 𝐶 .

6 PROCESS ISOLATION
To prevent the output of prisoners without applying a DP
mechanism, we propose a system design that isolates pris-
oner values from user-provided script execution at the pro-
cess level. We illustrate its architecture in Figure 2. The
user-provided Python script is executed in the user process,
while prisoner values reside exclusively in the private pro-
cess. When a private dataframe is loaded, a reference to it is
returned from the private process to the user process, while
its actual content remains in the private process. Subsequent
computations involving prisoners are internally forwarded
to the private process via remote procedure calls (RPCs),
with prisoner references passed as arguments. Once a DP

1 def DiffPID3(df, attrs, class_attr, d, eps):
2 # df : Input PrivDataFrame (categorical elements)
3 # attrs : Set of explanatory attributes (column names)
4 # class_attr : Target attribute (column name)
5 # d : Maximum tree depth
6 # eps : Epsilon consumed in this function
7 eps_each = eps / (2*(d+1))
8 return build_DiffPID3(df, attrs, class_attr, d, eps_each)
9

10 def build_DiffPID3(df, attrs, class_attr, d, eps):
11 t = max([len(df.domains[a].categories) for a in attrs])
12 C = len(df.domains[class_attr].categories)
13 N = noisy_count(df, eps)
14
15 if len(attrs) == 0 or d == 0 or N/(t*C) < (2**0.5)/eps:
16 # Record the mode of class_attr values in a leaf node
17 class_counts = {c: noisy_count(df_c, eps) \
18 for c, df_c in df.groupby(class_attr)}
19 best_class = max(class_counts, key=class_counts.get)
20 return LeafNode(best_class)
21
22 # Choose best_attr that gives the best split
23 qs = {a: quality_fn(df, a, class_attr) for a in attrs}
24 best_attr = pj.exponential_mechanism(qs, eps=eps)
25
26 # Partition df based on best_attr values and recurse
27 node = InnerNode(best_attr)
28 for category, df_child in df.groupby(best_attr):
29 child_node = build_DiffPID3(df_child, \
30 attrs - {best_attr}, class_attr, d - 1, eps)
31 node.add_child(category, child_node)
32 return node
33
34 # Return a noisy row count (>= 0)
35 def noisy_count(df, eps):
36 return max(0, pj.laplace_mechanism(df.shape[0], eps=eps))
37
38 # Implement "Max operator" as a quality function
39 def quality_fn(df, split_attr, class_attr):
40 s = 0
41 for _, df_c in df.groupby(split_attr):
42 s += df_c[class_attr].value_counts(sort=False).max()
43 return s

Figure 3: DiffPID3 algorithm [8] written in PrivJail.

mechanism is applied, the resulting values (public values)
can be directly returned to the user process.
Due to process isolation, unintended operations in user-

provided scripts or vulnerabilities in the Python runtime
do not directly affect prisoners in the private process. The
only way to access prisoners is to make proper RPC requests,
which are language-independent and predefined in PrivJail.

7 CASE STUDY: DP DECISION TREE
To demonstrate the expressiveness of PrivJail, we faith-

fully implemented a DP decision tree algorithm called Diff-
PID3 [8], as shown in Figure 3. To summarize the key points
of this program:
• It involves recursion with conditional branching based on

input data. Since static analysis and tracing are difficult in
this case, dynamic analysis is particularly effective.
• Dynamic sensitivity tracking (section 5) is effective to

automatically calibrate noise to satisfy 𝜖-DP. For example,
in quality_fn(), multiple computations on prisoners are
combined and passed to the exponential mechanism [16].
• df.groupby() exclusively partitions the dataframe, and
each partitioned dataframe is then recursively processed.
To properly account for the total privacy budget, it is
necessary to consider the parallel composition theorem
(not covered in this abstract).
PrivJail is available at https://github.com/privjail/privjail.
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