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Abstract
Standard differential privacy treats all features uni-
formly, overlooking the distinction between sen-
sitive and insensitive features in practice. We in-
troduce a relaxed definition of differential privacy
that accounts for such privacy heterogeneity, al-
lowing certain features to be treated as insensitive
even when correlated with sensitive ones. We in-
troduce CorrDP, a correlation-aware framework
that relaxes privacy for insensitive features while
accounting for their correlations with sensitive
features, quantified via total variation distance.
We design algorithms for differentially private
empirical risk minimization (DP-ERM) under
the CorrDP framework, incorporating distance-
dependent noise into gradients for theoretically
enhanced utility guarantees. When the correla-
tion distance is unknown, we estimate it from
the dataset while maintaining comparable privacy-
utility guarantees.

1. Introduction
Differential Privacy (DP, [4]), which enforces a worst-case
bound on privacy loss, ensures that the output of an algo-
rithm does not depend significantly on any single data point.
While DP has become a standard for privacy-preserving
algorithms, it assumes that all features are equally sensitive,
leading to overly conservative privacy-utility trade-offs.

Empirical Risk Minimization (ERM) is among the funda-
mental and well-studied problems of all privacy-preserving
machine learning problems [3]. The goal of ERM is to find
the best parameter θ ∈ Rm of a loss function to minimize
empirical risk given on a dataset D. In the standard (ϵ, δ)-
DP setting for a convex loss, DP-ERM algorithms achieve
a minimax optimal utility guarantee Õ (

√
m/(nϵ)) [2] via

incorporating noise into the gradient [1, 9]. However, this
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guarantee can be overly conservative, particularly in high-
dimensional settings with few sensitive features, as it applies
uniform noise to all parameter dimensions.

In many real-world applications, feature sensitivity varies,
and features are often correlated. Applying a uniform pri-
vacy mechanism that disregards the sensitivity levels can
lead to excessive information loss and suboptimal utility,
distorting the dataset more than necessary. Recent semi-
sensitive DP approaches [8, 7] address such distinctions
by treating some features as private and others as public.
In practice, this strategy is problematic because these pub-
lic features may be correlated with private features, under-
mining their privacy. An ideal privacy mechanism would
account for such correlations by robustly protecting the sen-
sitive measurements while adding minimal noise to less
sensitive but correlated features.

In this work, we investigate whether relaxing standard pri-
vacy definitions can improve the privacy-utility tradeoff,
particularly in datasets with correlated features. Specifically,
we aim to answer the following questions: (1) What is an
appropriate privacy mechanism for datasets with correlated
features? (2) Can a relaxed notion of differential privacy
improve the privacy-utility tradeoff? If so, how much?

To address these questions, we propose CorrDP, a new
correlation-aware differential privacy framework that ac-
counts for feature dependencies while ensuring rigorous pri-
vacy and utility guarantees. This notion offers a natural way
to quantify correlations between sensitive and insensitive
features, and integrates probability distances like total vari-
ation distance with standard mechanisms like the Laplace
mechanism. Applying CorrDP to DP-ERM, we design Cor-
rDP-SGD algorithms that incorporate distance-dependent
noise for smooth loss functions. CorrDP improves the
privacy-utility tradeoff, achieving a utility improvement by
a factor of

√
m/ms under mild conditions, where ms de-

notes the number of sensitive features. When the correlation
distance is unknown, we propose an estimation procedure
that uses an upper confidence bound, mitigating estimation
and sensitivity errors while maintaining the same level of
privacy-utility performance.

1



2. CorrDP: Setup and Mechanisms
Denote X as the data domain where each point X ∈ X ⊆
Rm is of high dimensional with X = (XS , XU )⊤. Here, S
denotes the indices of sensitive features that require protec-
tion, and U denotes the indices of insensitive features such
that S ∪ U = [m] and S ∩ U = ∅.

In the standard (global) differential privacy, all feature com-
ponents of the data point in the data domain are assumed
to be equally sensitive, thus the same privacy constraint
is enforced on the change of any feature component be-
tween D,D′. This ignores the heterogeneity among fea-
ture changes in neighboring databases. To capture this, we
present the concept of CorrDP by incorporating a “distance”
metric between databases d(D,D′), which quantifies the
degree of privacy loss for feature differences there.

Definition 2.1 (Neighboring Database). Databases D and
D′ are neighboring, denoted ∥D − D′∥1 = 1, if they differ
in at most one entry, e and e′, which themselves differ only
in their sensitive features or one insensitive feature.

Definition 2.2 (CorrDP). A randomized algorithm A is
(ϵ, δ)-correlated differentially private if for all potential out-
put sets R in the output space of A and for all neighboring
databases D,D′:

P(A(D) ∈ R) ≤ e
ϵ

d(D,D′)P(A(D′) ∈ R) + δ.

We need d(D,D′) to satisfy certain properties.

Definition 2.3 (Axioms of Sensitivity Distance). For neigh-
boring databases D,D′ differing in entries e and e′, the
distance metric d captures the impact of changes on sensi-
tive features and must satisfy the following: (1) d(D,D′) ∈
[0, 1]. (2) When e and e′ differ in sensitive features (S),
d(D,D′) = 1. (3) When e and e′ differ only in insensitive
features (U), d(D,D′) ∈ [0, 1). If insensitive features are
independent of the sensitive features, then d(D,D′) = 0.

The notion of neighboring database excludes changes
in both sensitive and insensitive features because then
d(D,D′) = 1, and the CorrDP constraint becomes exactly
DP, eliminating any benefits from the relaxed CorrDP no-
tion. Definition 2.1 (and Assumption 3.1 in Section 3) can
be relaxed to allow changes in multiple insensitive features.

Throughout the main body, we define d(D,D′) based on the
Total Variation (TV) Distance, as in Definition 2.4, which
naturally satisfies the desired properties above.

Definition 2.4 (Choice of d). For the two neighboring
databases D,D′ that differ in two entries e and e′, define:

d(D,D′) := max
I:I⊆[m+1]

TV (PXS |eI ,PXS |(e′)I ), (1)

where PXS |eI is the conditional distribution of the sensi-
tive features XS given XI = eI . TV distance is defined

as TV (P,Q) := supA∈F |P(A) − Q(A)| for a measur-
able space (Ω,F) and probability distributions P and Q
on (Ω,F). Then (1) satisfies the axioms in Definition 2.3.

Next we present some concrete examples demonstrating
how the CorrDP framework can be instantiated and applied.
Example 2.5. Consider the feature X = (X(1), X(2))⊤,
where S = {1}, U = {2}. X(1) and X(2) are par-
tially correlated with PX(1)|X(2)=k ∼ Bernoulli(k/3),∀k ∈
{1, 2} for entries in the database D,D′. Suppose two
databases D and D′ differ by e and e′. If e =
(1, 2)⊤ and e′ = (0, 1)⊤, then d(D,D′) = 1 since
TV (PX(1)|X(1)=1,PX(1)|X(1)=0) = 1.

However, if e = (1, 2)⊤ and e′ = (1, 1)⊤, then d(D,D′) =
TV (PX(1)|X(2)=2,PX(1)|X(2)=1) = 1/3 < 1. In this case,
the entrywise difference and its influence on the associated
privacy constraint is not as large as in the previous case since
the two entries only differ in the insensitive coordinate.
Remark 2.6. The set d(D,D′) recovers some existing DP
notions. When all the features are sensitive, d(D,D′) =
1,∀D,D′ neighboring databases, which recovers the stan-
dard definition of differential privacy. When only some
private features need to be protected and other public fea-
tures are known to be independent, then d(D,D′) = 1 if
and only if eS ̸= (e′)S , which recovers the definition of
semi-sensitive DP [8, 7].

2.1. Standard Mechanism for CorrDP

We show how to adopt the standard Laplace Mechanism
to achieve privacy under CorrDP, and show the utility im-
provements from using CorrDP.

First, we recall the sensitivity of a function with a vector
input and output:
Definition 2.7 (ℓ1, Coordinate, and Correlated Sensitiv-
ity). For any K ≥ 1, the ℓ1-sensitivity of function f :
N|X | → RK is: ∆f := max D,D′∈N|X|

∥D−D′∥1=1

∥f(D) − f(D′)∥1,

and the sensitivity of the k-th coordinate fk of f is: ∆fk :=
max D,D′∈N|X|

∥D−D′∥1=1

|fk(D)−fk(D′)|. The correlated sensitivity

is: ∆Cf = min{
∑

j∈S ∆fj+
∑

j∈U ∆fjTV (j),∆f} and
TV (j) = maxx1,x2∈X TV (P

XS |x(j)
1
,P

XS |x(j)
2
) ≤ 1.

We note that ∆f ≤
∑

k∈[K] ∆fk, where equality holds
when a common pair of neighboring databases (D∗, (D∗)′)
with ∥D∗ − (D∗)′∥1 = 1 simultaneously attains the max-
imum absolute difference ∆fk for k ∈ [K]. Correlated
sensitivity accounts for the heterogeneous privacy budget of
insensitive features j ∈ U , incorporating their correlation
with sensitive features through a weighting factor, TV (j).
Next, we show how modifying Laplace Mechanism with
correlated sensitivity enables CorrDP while improving ac-
curacy guarantees.
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Definition 2.8 (CorrDP Laplace Mechanism). For a mea-
surable function f(·) : N|X | → RK where the i-th dimen-
sion of f only applies to the i-th feature of D, the Cor-
rDP Laplace mechanism is defined as: M̃L(D, f(·), ϵ) =
f(D) + (Y1, . . . , YK), where Yi ∼i.i.d. Lap(∆Cf/ϵ).

Theorem 2.9 (CorrDP Laplace Guarantees). The CorrDP
Laplace mechanism is (ϵ, 0)-CorrDP, and ∀β ∈ (0, 1],
P[∥f(D)− M̃L(D, f(·), ϵ)∥∞ ≤ ∆Cf log(K/β)

ϵ ] ≥ 1− β.

The standard Laplace mechanism (e.g., Chapter 3.3 in [5])
has a high-probability accuracy guarantee that ∥f(D) −
ML(D, f(·), ϵ)∥∞ ≤ ∆f log(K/β)

ϵ . Comparing this with
Theorem 2.9, we see that the CorrDP Laplace mechanism
gives a better accuracy guarantee exactly when the lack of
correlation across features leads to lower sensitivity.

3. CorrDP ERM
Given a dataset D = {(xi, yi)}i∈[n] and the individual loss
function ℓ(θ; (X,Y )) where X denotes the feature and Y
denotes the label, DP-ERM aims to obtain a differentially
private solution θpriv ∈ Rm close to the nonprivate solution:
θ̂ ∈ argminθ∈Θ{F (θ,D) := 1/n

∑n
i=1 ℓ(θ; (xi, yi))}.

We measure the utility loss of θpriv as the additional empir-
ical loss from adding privacy:

R(θpriv) := F (θpriv,D)− F (θ̂,D). (2)

Existing DP-ERM models satisfying (ϵ, δ)-DP will auto-
matically satisfy our relaxed (ϵ, δ)-CorrDP notion. Our
main goal is to determine whether relaxing to CorrDP and
appropriately modifying the DP-ERM algorithms can im-
prove utility. We next give some assumptions that will be
necessary for our results.

Assumption 3.1 (Neighboring Database in ERM). The two
elements e and e′ in neighboring databases D and D′ only
differ in sensitive features or one insensitive feature in X ,
and cannot differ in the label Y .

Building on Definition 2.1, this assumption further excludes
label changes of Y between D,D′. This is supported by
prior work [8], which also assumed labels were public and
did not require privacy protection. When labels are private
while features are public, one can refer to [6]. We can relax
this Assumption as we show in the full version.

For the DP-ERM problem, we consider general convex loss
with bounded decision and feature domains.

Assumption 3.2 (Regularity of Loss Function). The loss
function ℓ is L-Lipschitz, i.e., |ℓ(θ1; (x, y)−ℓ(θ2; (x, y))| ≤
L∥θ1 − θ2∥2.

Assumption 3.3 (Boundness of Domain). The decision
domain X is bounded such that ∥x∥2 ≤ B with each com-
ponent |x(i)| ≤ Bi, i ∈ [m],∀x ∈ X . Without loss of

generality, we set B = 1 and each Bi = Θ(1/
√
m). Fur-

thermore, the parameter is bounded such that ∥θ∥2 ≤ D.

The boundness of domain and parameters is naturally im-
posed for theoretical analyses in DP-ERM algorithms [9].
Unbounded gradients can be handled via gradient clipping.

Finally, we link the sensitivity of features to the parameter
coordinate.

Assumption 3.4 (Sensitivity of Gradient Coordinate). For
the i-th gradient coordinate, i ∈ [m], (∇θℓ(θ; (x1, y)) −
∇θℓ(θ; (x2, y))i ≤ C1L|x(i)

1 − x
(i)
2 |+ C2

∑
j ̸=i

L
m |x(j)

1 −
x
(j)
2 | for some constants C1, C2.

This assumption requires the loss function to be smooth
with respect to changes in x. Furthermore, the sensitivity
of the i-th parameter coordinate is mainly controlled by the
corresponding i-th feature component. This naturally holds
when ℓ(θ; (x, y)) can be further represented by ℓ̃(θ⊤x, y)
for some ℓ̃, i.e., generalized linear model (GLM). In the
full version, we demonstrate that linear and logistic regres-
sion satisfies these assumptions.

3.1. CorrDP-SGD Algorithm and Guarantees

We present CorrDP-SGD in Algorithm 1, which incorpo-
rates CorrDP based on the standard DP-SGD [2, 1]. The
key part is the modified noise scale in Line 3, where each
coordinate σi in the noise variance σ is set as:

σ2
i =

{
(log(1/δ)+1)L2T

n2ϵ2 , if i ∈ S;
(log(1/δ)+1)L2T max{TV (i),m2

s/m
2}

n2ϵ2 , else
(3)

where TV (j) = maxx1,x2∈X TV (P
XS |x(j)

1
,P

XS |x(j)
2
).

Compared with the standard DP-SGD mechanism [2], the
only difference is the noise variance term for i ∈ U , where
the unit scale 1 is replaced with max{TV (i),m2

s/m
2} ≤

1. Despite the smaller noise imposed on the insensitive
features, we show that CorrDP still guarantees privacy.

Theorem 3.5 (Privacy Guarantee of CorrDP-SGD). Under
Assumptions 3.1, 3.2, 3.3 and 3.4, for ϵ ∈ (0, c1] for some
constant c1 and δ > 0, Algorithm 1 is (ϵ, δ)-CorrDP.

Theorem 3.6 (Utility Guarantee of CorrDP-SGD). Un-
der Assumptions 3.1, 3.2, 3.3 and 3.4, for Algo-
rithm 1 with step sizes αt = D√

(L2+
∑m

i=1 σ2
i )t

and

T = Θ(n2), if F (θ,D) is convex, then R(θpriv) =

Õ

(√
(ms+min{

∑
i∈U TV (i),ms/4}) log(1/δ)

nϵ

)
. Furthermore,

if
∑

i∈U TV (i) = Θ(ms), then R(θpriv) = Õ
(√

ms

nϵ

)
.

This result demonstrates that if many features are insensitive
and weakly correlated with sensitive ones, CorrDP-SGD
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Algorithm 1 CorrDP Stochastic Gradient Descent
(CorrDP-SGD)

Require: Parameter Domain Θ, iterations number T , and
step sizes αt; Dataset D = {(xi, yi)}i∈[n]; Subsam-
pling size nq with 1 ≤ nq ≤ n; CorrDP parameters
(ϵ, δ).

1: Initialize θ1 and set diagonal entries of the noise vari-
ance {σ2

i }i∈[m] according to (3).
2: for t = 1, . . . , T do
3: Randomly sample nq datapoints {(x(i), y(i))}i∈[nq ]

from the whole dataset D.
4: Generate the noise b ∼ N(0, diag(σ2)) and update:

θt+1 = ΠΘ

(
θt − αt

(
1

nq

nq∑
i=1

∇θℓ(θt; (x(i), y(i))) + b

))
.

5: end for
Ensure: θpriv = θT+1.

significantly improves utility over the standard minimax re-
sult of DP-ERM bound Õ

(√
m

nϵ

)
when ms = o(m). These

utility gains extend to strongly convex and general noncon-
vex losses and other first-order algorithms, including SVRG
[9] or Adam.

3.2. Lower Bound

We provide a near-matching lower bound in terms of n, ϵ
and problem dimension.
Theorem 3.7 (Lower bound for (ϵ, δ)-CorrDP algorithm).
Let n,m ∈ N, ϵ > 0 and δ = o(1/n). Denote {TV (i)}i∈U
by {TV (i)}i∈U sorted in descending order. For every (ϵ, δ)-
CorrDP algorithm outputting θpriv, there exists a D such
that with probability at least 1/3,

R(θpriv) = Ω

(
min

{
1,

√
ms+maxk∈[mu]{k(TV (k))2}

nϵ

})
.

Comparing this lower bound against the utility upper
bound of CorrDP-SGD in Theorem 3.6, we see that
maxk∈[mu]{k(TV (k))2} ≤

∑
i∈[mu]

TV (i).

3.3. Estimating of TV distance in CorrDP-SGD

In this section, we address the challenge of handling an
unknown TV distance in Algorithm 1. The noise terms σi

(Equation (3)) in CorrDP-SGD depend on the maximum
of the conditional total variation distance TV (i), which is
generally unknown. A naive approach would be to empiri-
cally estimate {TV (i)}i∈U from the dataset D as T̂ V D(i)
and substitute them directly. However, this leads to privacy
leakage since the estimation procedure itself depends on
D. We show that in many scenarios, the estimation error is
negligible after proper processing. For example, if domain

knowledge provides an exact or near-exact upper bound:
Ui = TV (i)(1+ o(1)), replacing TV (i) with Ui, i ∈ U en-
sures that utility and privacy guarantees remain unaffected.

We focus on the more general case when no prior estimate of
TV (i) is available, but its estimation is regular and smooth.
Our goal will be to find adjusted expressions for the noise
terms in Equation (3) to preserve similar privacy and utility
guarantees as if TV (i) were known. In the following, we
adjust the estimation of {TV (i)}i∈U in the noise terms σi.
To proceed, we require two assumptions as follows:

Assumption 3.8 (Bounded Estimation Error). Within D,
each entry is i.i.d. sampled from P∗, and with probability
at least 1 − β, for each i ∈ [m], |T̂ V D(i) − TV (i)| ≤
c2

√
log(1/β)

nγ for some constants c2 ∈ (0,∞) and γ ∈ (0, 1
2 ].

Assumption 3.9 (Bounded Sensitivity). Given two neigh-
boring databases D and D′, ∀i ∈ U , |T̂ V D′(i)−T̂ V D(i)| ≤
c3
n for some constants c3 < ∞.

Sensitivity is O(1/n) in many empirical estimators since
each sample contributes 1/n to the empirical distribution.
Changing one sample influences the probability mass by at
most 1/n, resulting in a proportional effect on TV distance
estimation. In the full version, we give empirical estimators
T̂ V D(i) that satisfy Assumptions 3.8 and 3.9.

We impose the following modified noise for TV (i)i∈U :

Definition 3.10 (In-Sample TV Estimation). When
{TV (i)}i∈U is unknown, replace TV (i) with T̃ V (i) =

T̂ V D(i) + 2c2

√
log(mu/δ)

nγ in the expression for σ2
i in (3).

The additional term in the estimator accounts for inflation
due to the estimation error. The sensitivity error does not
explicitly appear in Definition 3.10, because its magnitude
O(1/n), is dominated by the estimation error from Assump-
tion 3.8. However, Assumption 3.9 remains necessary to
control variance differences in the privacy analysis.

Theorem 3.11 (Guarantees of CorrDP with In-Sample TV
Estimation). When the estimator in Definition 3.10 is used
for the noise terms σi, when n = Ω(log(1/δ)) and under
Assumptions 3.8 and 3.9, Algorithm 1 is (ϵ, 2δ)-CorrDP
and achieves the same utility guarantee as Theorem 3.6.

The full version of this paper also considers general loss
functions including neural networks, demonstrates that other
distance that can be incorporated in this framework in place
of TV (·, ·), and evaluates the empirical performance of
CorrDP-SGD.
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